This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzmn | |- ( ( M e. ZZ /\ N e. NN0 ) -> M e. ( ZZ>= ` ( M - N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( M e. ZZ /\ N e. NN0 ) -> M e. ZZ ) |
|
| 2 | simpr | |- ( ( M e. ZZ /\ N e. NN0 ) -> N e. NN0 ) |
|
| 3 | 2 | nn0zd | |- ( ( M e. ZZ /\ N e. NN0 ) -> N e. ZZ ) |
| 4 | 1 3 | zsubcld | |- ( ( M e. ZZ /\ N e. NN0 ) -> ( M - N ) e. ZZ ) |
| 5 | 1 | zred | |- ( ( M e. ZZ /\ N e. NN0 ) -> M e. RR ) |
| 6 | 2 | nn0red | |- ( ( M e. ZZ /\ N e. NN0 ) -> N e. RR ) |
| 7 | 5 6 | readdcld | |- ( ( M e. ZZ /\ N e. NN0 ) -> ( M + N ) e. RR ) |
| 8 | nn0addge1 | |- ( ( M e. RR /\ N e. NN0 ) -> M <_ ( M + N ) ) |
|
| 9 | 5 8 | sylancom | |- ( ( M e. ZZ /\ N e. NN0 ) -> M <_ ( M + N ) ) |
| 10 | 5 7 6 9 | lesub1dd | |- ( ( M e. ZZ /\ N e. NN0 ) -> ( M - N ) <_ ( ( M + N ) - N ) ) |
| 11 | 5 | recnd | |- ( ( M e. ZZ /\ N e. NN0 ) -> M e. CC ) |
| 12 | 6 | recnd | |- ( ( M e. ZZ /\ N e. NN0 ) -> N e. CC ) |
| 13 | 11 12 | pncand | |- ( ( M e. ZZ /\ N e. NN0 ) -> ( ( M + N ) - N ) = M ) |
| 14 | 10 13 | breqtrd | |- ( ( M e. ZZ /\ N e. NN0 ) -> ( M - N ) <_ M ) |
| 15 | eluz2 | |- ( M e. ( ZZ>= ` ( M - N ) ) <-> ( ( M - N ) e. ZZ /\ M e. ZZ /\ ( M - N ) <_ M ) ) |
|
| 16 | 4 1 14 15 | syl3anbrc | |- ( ( M e. ZZ /\ N e. NN0 ) -> M e. ( ZZ>= ` ( M - N ) ) ) |