This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdschrmulg.1 | |- C = ( chr ` R ) |
|
| dvdschrmulg.2 | |- B = ( Base ` R ) |
||
| dvdschrmulg.3 | |- .x. = ( .g ` R ) |
||
| dvdschrmulg.4 | |- .0. = ( 0g ` R ) |
||
| Assertion | dvdschrmulg | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( N .x. A ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdschrmulg.1 | |- C = ( chr ` R ) |
|
| 2 | dvdschrmulg.2 | |- B = ( Base ` R ) |
|
| 3 | dvdschrmulg.3 | |- .x. = ( .g ` R ) |
|
| 4 | dvdschrmulg.4 | |- .0. = ( 0g ` R ) |
|
| 5 | simp1 | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> R e. Ring ) |
|
| 6 | dvdszrcl | |- ( C || N -> ( C e. ZZ /\ N e. ZZ ) ) |
|
| 7 | 6 | simprd | |- ( C || N -> N e. ZZ ) |
| 8 | 7 | 3ad2ant2 | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> N e. ZZ ) |
| 9 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 10 | 2 9 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 11 | 5 10 | syl | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( 1r ` R ) e. B ) |
| 12 | simp3 | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> A e. B ) |
|
| 13 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 14 | 2 3 13 | mulgass2 | |- ( ( R e. Ring /\ ( N e. ZZ /\ ( 1r ` R ) e. B /\ A e. B ) ) -> ( ( N .x. ( 1r ` R ) ) ( .r ` R ) A ) = ( N .x. ( ( 1r ` R ) ( .r ` R ) A ) ) ) |
| 15 | 5 8 11 12 14 | syl13anc | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( ( N .x. ( 1r ` R ) ) ( .r ` R ) A ) = ( N .x. ( ( 1r ` R ) ( .r ` R ) A ) ) ) |
| 16 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 17 | 5 16 | syl | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> R e. Grp ) |
| 18 | eqid | |- ( od ` R ) = ( od ` R ) |
|
| 19 | 18 9 1 | chrval | |- ( ( od ` R ) ` ( 1r ` R ) ) = C |
| 20 | simp2 | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> C || N ) |
|
| 21 | 19 20 | eqbrtrid | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( ( od ` R ) ` ( 1r ` R ) ) || N ) |
| 22 | 2 18 3 4 | oddvdsi | |- ( ( R e. Grp /\ ( 1r ` R ) e. B /\ ( ( od ` R ) ` ( 1r ` R ) ) || N ) -> ( N .x. ( 1r ` R ) ) = .0. ) |
| 23 | 17 11 21 22 | syl3anc | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( N .x. ( 1r ` R ) ) = .0. ) |
| 24 | 23 | oveq1d | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( ( N .x. ( 1r ` R ) ) ( .r ` R ) A ) = ( .0. ( .r ` R ) A ) ) |
| 25 | 2 13 4 | ringlz | |- ( ( R e. Ring /\ A e. B ) -> ( .0. ( .r ` R ) A ) = .0. ) |
| 26 | 25 | 3adant2 | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( .0. ( .r ` R ) A ) = .0. ) |
| 27 | 24 26 | eqtrd | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( ( N .x. ( 1r ` R ) ) ( .r ` R ) A ) = .0. ) |
| 28 | 2 13 9 | ringlidm | |- ( ( R e. Ring /\ A e. B ) -> ( ( 1r ` R ) ( .r ` R ) A ) = A ) |
| 29 | 28 | 3adant2 | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( ( 1r ` R ) ( .r ` R ) A ) = A ) |
| 30 | 29 | oveq2d | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( N .x. ( ( 1r ` R ) ( .r ` R ) A ) ) = ( N .x. A ) ) |
| 31 | 15 27 30 | 3eqtr3rd | |- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( N .x. A ) = .0. ) |