This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a prime number to divide a binomial coefficient. (Contributed by Thierry Arnoux, 17-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsbc | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P || ( P _C N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) = ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) |
|
| 2 | simpl | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. Prime ) |
|
| 3 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 4 | 3 | nnzd | |- ( P e. Prime -> P e. ZZ ) |
| 5 | 1nn0 | |- 1 e. NN0 |
|
| 6 | eluzmn | |- ( ( P e. ZZ /\ 1 e. NN0 ) -> P e. ( ZZ>= ` ( P - 1 ) ) ) |
|
| 7 | 4 5 6 | sylancl | |- ( P e. Prime -> P e. ( ZZ>= ` ( P - 1 ) ) ) |
| 8 | fzss2 | |- ( P e. ( ZZ>= ` ( P - 1 ) ) -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) |
|
| 9 | 7 8 | syl | |- ( P e. Prime -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) |
| 10 | fz1ssfz0 | |- ( 1 ... P ) C_ ( 0 ... P ) |
|
| 11 | 9 10 | sstrdi | |- ( P e. Prime -> ( 1 ... ( P - 1 ) ) C_ ( 0 ... P ) ) |
| 12 | 11 | sselda | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. ( 0 ... P ) ) |
| 13 | bcval2 | |- ( N e. ( 0 ... P ) -> ( P _C N ) = ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P _C N ) = ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) |
| 15 | 3 | nnnn0d | |- ( P e. Prime -> P e. NN0 ) |
| 16 | 15 | adantr | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. NN0 ) |
| 17 | elfzelz | |- ( N e. ( 1 ... ( P - 1 ) ) -> N e. ZZ ) |
|
| 18 | 17 | adantl | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. ZZ ) |
| 19 | bccl | |- ( ( P e. NN0 /\ N e. ZZ ) -> ( P _C N ) e. NN0 ) |
|
| 20 | 16 18 19 | syl2anc | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P _C N ) e. NN0 ) |
| 21 | 20 | nn0zd | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P _C N ) e. ZZ ) |
| 22 | 14 21 | eqeltrrd | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) e. ZZ ) |
| 23 | elfznn | |- ( N e. ( 1 ... ( P - 1 ) ) -> N e. NN ) |
|
| 24 | 23 | adantl | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. NN ) |
| 25 | 24 | nnnn0d | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. NN0 ) |
| 26 | 1zzd | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> 1 e. ZZ ) |
|
| 27 | 4 | adantr | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. ZZ ) |
| 28 | simpr | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. ( 1 ... ( P - 1 ) ) ) |
|
| 29 | elfzm11 | |- ( ( 1 e. ZZ /\ P e. ZZ ) -> ( N e. ( 1 ... ( P - 1 ) ) <-> ( N e. ZZ /\ 1 <_ N /\ N < P ) ) ) |
|
| 30 | 29 | biimpa | |- ( ( ( 1 e. ZZ /\ P e. ZZ ) /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( N e. ZZ /\ 1 <_ N /\ N < P ) ) |
| 31 | 30 | simp3d | |- ( ( ( 1 e. ZZ /\ P e. ZZ ) /\ N e. ( 1 ... ( P - 1 ) ) ) -> N < P ) |
| 32 | 26 27 28 31 | syl21anc | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N < P ) |
| 33 | ltsubnn0 | |- ( ( P e. NN0 /\ N e. NN0 ) -> ( N < P -> ( P - N ) e. NN0 ) ) |
|
| 34 | 33 | imp | |- ( ( ( P e. NN0 /\ N e. NN0 ) /\ N < P ) -> ( P - N ) e. NN0 ) |
| 35 | 16 25 32 34 | syl21anc | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P - N ) e. NN0 ) |
| 36 | 35 | faccld | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) e. NN ) |
| 37 | 36 | nnzd | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) e. ZZ ) |
| 38 | 25 | faccld | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) e. NN ) |
| 39 | 38 | nnzd | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) e. ZZ ) |
| 40 | 37 39 | zmulcld | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) e. ZZ ) |
| 41 | 37 | zcnd | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) e. CC ) |
| 42 | 39 | zcnd | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) e. CC ) |
| 43 | facne0 | |- ( ( P - N ) e. NN0 -> ( ! ` ( P - N ) ) =/= 0 ) |
|
| 44 | 35 43 | syl | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) =/= 0 ) |
| 45 | facne0 | |- ( N e. NN0 -> ( ! ` N ) =/= 0 ) |
|
| 46 | 25 45 | syl | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) =/= 0 ) |
| 47 | 41 42 44 46 | mulne0d | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) =/= 0 ) |
| 48 | uzid | |- ( P e. ZZ -> P e. ( ZZ>= ` P ) ) |
|
| 49 | 4 48 | syl | |- ( P e. Prime -> P e. ( ZZ>= ` P ) ) |
| 50 | dvdsfac | |- ( ( P e. NN /\ P e. ( ZZ>= ` P ) ) -> P || ( ! ` P ) ) |
|
| 51 | 3 49 50 | syl2anc | |- ( P e. Prime -> P || ( ! ` P ) ) |
| 52 | 51 | adantr | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P || ( ! ` P ) ) |
| 53 | 16 | nn0red | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. RR ) |
| 54 | 24 | nnrpd | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. RR+ ) |
| 55 | 53 54 | ltsubrpd | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P - N ) < P ) |
| 56 | prmndvdsfaclt | |- ( ( P e. Prime /\ ( P - N ) e. NN0 ) -> ( ( P - N ) < P -> -. P || ( ! ` ( P - N ) ) ) ) |
|
| 57 | 56 | imp | |- ( ( ( P e. Prime /\ ( P - N ) e. NN0 ) /\ ( P - N ) < P ) -> -. P || ( ! ` ( P - N ) ) ) |
| 58 | 2 35 55 57 | syl21anc | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( ! ` ( P - N ) ) ) |
| 59 | prmndvdsfaclt | |- ( ( P e. Prime /\ N e. NN0 ) -> ( N < P -> -. P || ( ! ` N ) ) ) |
|
| 60 | 59 | imp | |- ( ( ( P e. Prime /\ N e. NN0 ) /\ N < P ) -> -. P || ( ! ` N ) ) |
| 61 | 2 25 32 60 | syl21anc | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( ! ` N ) ) |
| 62 | ioran | |- ( -. ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) <-> ( -. P || ( ! ` ( P - N ) ) /\ -. P || ( ! ` N ) ) ) |
|
| 63 | euclemma | |- ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) <-> ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) ) ) |
|
| 64 | 63 | biimpd | |- ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) -> ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) ) ) |
| 65 | 64 | con3d | |- ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( -. ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) |
| 66 | 62 65 | biimtrrid | |- ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( ( -. P || ( ! ` ( P - N ) ) /\ -. P || ( ! ` N ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) |
| 67 | 66 | imp | |- ( ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) /\ ( -. P || ( ! ` ( P - N ) ) /\ -. P || ( ! ` N ) ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) |
| 68 | 2 37 39 58 61 67 | syl32anc | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) |
| 69 | 1 2 22 40 47 52 68 | dvdszzq | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P || ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) |
| 70 | 69 14 | breqtrrd | |- ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P || ( P _C N ) ) |