This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfzsplit.b | |- B = ( Base ` G ) |
|
| gsummptfzsplit.p | |- .+ = ( +g ` G ) |
||
| gsummptfzsplit.g | |- ( ph -> G e. CMnd ) |
||
| gsummptfzsplit.n | |- ( ph -> N e. NN0 ) |
||
| gsummptfzsplit.y | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> Y e. B ) |
||
| Assertion | gsummptfzsplit | |- ( ph -> ( G gsum ( k e. ( 0 ... ( N + 1 ) ) |-> Y ) ) = ( ( G gsum ( k e. ( 0 ... N ) |-> Y ) ) .+ ( G gsum ( k e. { ( N + 1 ) } |-> Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzsplit.b | |- B = ( Base ` G ) |
|
| 2 | gsummptfzsplit.p | |- .+ = ( +g ` G ) |
|
| 3 | gsummptfzsplit.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsummptfzsplit.n | |- ( ph -> N e. NN0 ) |
|
| 5 | gsummptfzsplit.y | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> Y e. B ) |
|
| 6 | fzfid | |- ( ph -> ( 0 ... ( N + 1 ) ) e. Fin ) |
|
| 7 | fzp1disj | |- ( ( 0 ... N ) i^i { ( N + 1 ) } ) = (/) |
|
| 8 | 7 | a1i | |- ( ph -> ( ( 0 ... N ) i^i { ( N + 1 ) } ) = (/) ) |
| 9 | elnn0uz | |- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
|
| 10 | 4 9 | sylib | |- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 11 | fzsuc | |- ( N e. ( ZZ>= ` 0 ) -> ( 0 ... ( N + 1 ) ) = ( ( 0 ... N ) u. { ( N + 1 ) } ) ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( 0 ... ( N + 1 ) ) = ( ( 0 ... N ) u. { ( N + 1 ) } ) ) |
| 13 | 1 2 3 6 5 8 12 | gsummptfidmsplit | |- ( ph -> ( G gsum ( k e. ( 0 ... ( N + 1 ) ) |-> Y ) ) = ( ( G gsum ( k e. ( 0 ... N ) |-> Y ) ) .+ ( G gsum ( k e. { ( N + 1 ) } |-> Y ) ) ) ) |