This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for commutative rings (special case of csrgbinom ): ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) . (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngbinom.s | |- S = ( Base ` R ) |
|
| crngbinom.m | |- .X. = ( .r ` R ) |
||
| crngbinom.t | |- .x. = ( .g ` R ) |
||
| crngbinom.a | |- .+ = ( +g ` R ) |
||
| crngbinom.g | |- G = ( mulGrp ` R ) |
||
| crngbinom.e | |- .^ = ( .g ` G ) |
||
| Assertion | crngbinom | |- ( ( ( R e. CRing /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngbinom.s | |- S = ( Base ` R ) |
|
| 2 | crngbinom.m | |- .X. = ( .r ` R ) |
|
| 3 | crngbinom.t | |- .x. = ( .g ` R ) |
|
| 4 | crngbinom.a | |- .+ = ( +g ` R ) |
|
| 5 | crngbinom.g | |- G = ( mulGrp ` R ) |
|
| 6 | crngbinom.e | |- .^ = ( .g ` G ) |
|
| 7 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 8 | ringsrg | |- ( R e. Ring -> R e. SRing ) |
|
| 9 | 7 8 | syl | |- ( R e. CRing -> R e. SRing ) |
| 10 | 9 | adantr | |- ( ( R e. CRing /\ N e. NN0 ) -> R e. SRing ) |
| 11 | 5 | crngmgp | |- ( R e. CRing -> G e. CMnd ) |
| 12 | 11 | adantr | |- ( ( R e. CRing /\ N e. NN0 ) -> G e. CMnd ) |
| 13 | simpr | |- ( ( R e. CRing /\ N e. NN0 ) -> N e. NN0 ) |
|
| 14 | 10 12 13 | 3jca | |- ( ( R e. CRing /\ N e. NN0 ) -> ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) ) |
| 15 | 1 2 3 4 5 6 | csrgbinom | |- ( ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 16 | 14 15 | sylan | |- ( ( ( R e. CRing /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |