This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a commutative ring with prime characteristic, the Frobenius function F is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frobrhm.1 | |- B = ( Base ` R ) |
|
| frobrhm.2 | |- P = ( chr ` R ) |
||
| frobrhm.3 | |- .^ = ( .g ` ( mulGrp ` R ) ) |
||
| frobrhm.4 | |- F = ( x e. B |-> ( P .^ x ) ) |
||
| frobrhm.5 | |- ( ph -> R e. CRing ) |
||
| frobrhm.6 | |- ( ph -> P e. Prime ) |
||
| Assertion | frobrhm | |- ( ph -> F e. ( R RingHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frobrhm.1 | |- B = ( Base ` R ) |
|
| 2 | frobrhm.2 | |- P = ( chr ` R ) |
|
| 3 | frobrhm.3 | |- .^ = ( .g ` ( mulGrp ` R ) ) |
|
| 4 | frobrhm.4 | |- F = ( x e. B |-> ( P .^ x ) ) |
|
| 5 | frobrhm.5 | |- ( ph -> R e. CRing ) |
|
| 6 | frobrhm.6 | |- ( ph -> P e. Prime ) |
|
| 7 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 8 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 9 | 5 | crngringd | |- ( ph -> R e. Ring ) |
| 10 | simpr | |- ( ( ph /\ x = ( 1r ` R ) ) -> x = ( 1r ` R ) ) |
|
| 11 | 10 | oveq2d | |- ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ x ) = ( P .^ ( 1r ` R ) ) ) |
| 12 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 13 | 12 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 14 | 9 13 | syl | |- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 15 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 16 | nnnn0 | |- ( P e. NN -> P e. NN0 ) |
|
| 17 | 6 15 16 | 3syl | |- ( ph -> P e. NN0 ) |
| 18 | 12 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 19 | 12 7 | ringidval | |- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 20 | 18 3 19 | mulgnn0z | |- ( ( ( mulGrp ` R ) e. Mnd /\ P e. NN0 ) -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) ) |
| 21 | 14 17 20 | syl2anc | |- ( ph -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) ) |
| 22 | 21 | adantr | |- ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ ( 1r ` R ) ) = ( 1r ` R ) ) |
| 23 | 11 22 | eqtrd | |- ( ( ph /\ x = ( 1r ` R ) ) -> ( P .^ x ) = ( 1r ` R ) ) |
| 24 | 1 7 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 25 | 9 24 | syl | |- ( ph -> ( 1r ` R ) e. B ) |
| 26 | 4 23 25 25 | fvmptd2 | |- ( ph -> ( F ` ( 1r ` R ) ) = ( 1r ` R ) ) |
| 27 | 12 | crngmgp | |- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 28 | 5 27 | syl | |- ( ph -> ( mulGrp ` R ) e. CMnd ) |
| 29 | 28 | adantr | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( mulGrp ` R ) e. CMnd ) |
| 30 | 17 | adantr | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> P e. NN0 ) |
| 31 | simprl | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> i e. B ) |
|
| 32 | simprr | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> j e. B ) |
|
| 33 | 12 8 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 34 | 18 3 33 | mulgnn0di | |- ( ( ( mulGrp ` R ) e. CMnd /\ ( P e. NN0 /\ i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) ) |
| 35 | 29 30 31 32 34 | syl13anc | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) ) |
| 36 | simpr | |- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( .r ` R ) j ) ) -> x = ( i ( .r ` R ) j ) ) |
|
| 37 | 36 | oveq2d | |- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( .r ` R ) j ) ) -> ( P .^ x ) = ( P .^ ( i ( .r ` R ) j ) ) ) |
| 38 | 9 | adantr | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> R e. Ring ) |
| 39 | 1 8 | ringcl | |- ( ( R e. Ring /\ i e. B /\ j e. B ) -> ( i ( .r ` R ) j ) e. B ) |
| 40 | 38 31 32 39 | syl3anc | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( i ( .r ` R ) j ) e. B ) |
| 41 | ovexd | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( .r ` R ) j ) ) e. _V ) |
|
| 42 | 4 37 40 41 | fvmptd2 | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( .r ` R ) j ) ) = ( P .^ ( i ( .r ` R ) j ) ) ) |
| 43 | simpr | |- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = i ) -> x = i ) |
|
| 44 | 43 | oveq2d | |- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = i ) -> ( P .^ x ) = ( P .^ i ) ) |
| 45 | ovexd | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ i ) e. _V ) |
|
| 46 | 4 44 31 45 | fvmptd2 | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` i ) = ( P .^ i ) ) |
| 47 | simpr | |- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = j ) -> x = j ) |
|
| 48 | 47 | oveq2d | |- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = j ) -> ( P .^ x ) = ( P .^ j ) ) |
| 49 | ovexd | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ j ) e. _V ) |
|
| 50 | 4 48 32 49 | fvmptd2 | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` j ) = ( P .^ j ) ) |
| 51 | 46 50 | oveq12d | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( ( F ` i ) ( .r ` R ) ( F ` j ) ) = ( ( P .^ i ) ( .r ` R ) ( P .^ j ) ) ) |
| 52 | 35 42 51 | 3eqtr4d | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( .r ` R ) j ) ) = ( ( F ` i ) ( .r ` R ) ( F ` j ) ) ) |
| 53 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 54 | 14 | adantr | |- ( ( ph /\ x e. B ) -> ( mulGrp ` R ) e. Mnd ) |
| 55 | 17 | adantr | |- ( ( ph /\ x e. B ) -> P e. NN0 ) |
| 56 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 57 | 18 3 54 55 56 | mulgnn0cld | |- ( ( ph /\ x e. B ) -> ( P .^ x ) e. B ) |
| 58 | 57 4 | fmptd | |- ( ph -> F : B --> B ) |
| 59 | 5 | adantr | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> R e. CRing ) |
| 60 | 6 | adantr | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> P e. Prime ) |
| 61 | 1 53 3 2 59 60 31 32 | freshmansdream | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( +g ` R ) j ) ) = ( ( P .^ i ) ( +g ` R ) ( P .^ j ) ) ) |
| 62 | simpr | |- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( +g ` R ) j ) ) -> x = ( i ( +g ` R ) j ) ) |
|
| 63 | 62 | oveq2d | |- ( ( ( ph /\ ( i e. B /\ j e. B ) ) /\ x = ( i ( +g ` R ) j ) ) -> ( P .^ x ) = ( P .^ ( i ( +g ` R ) j ) ) ) |
| 64 | 1 53 | ringacl | |- ( ( R e. Ring /\ i e. B /\ j e. B ) -> ( i ( +g ` R ) j ) e. B ) |
| 65 | 38 31 32 64 | syl3anc | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( i ( +g ` R ) j ) e. B ) |
| 66 | ovexd | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( P .^ ( i ( +g ` R ) j ) ) e. _V ) |
|
| 67 | 4 63 65 66 | fvmptd2 | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( +g ` R ) j ) ) = ( P .^ ( i ( +g ` R ) j ) ) ) |
| 68 | 46 50 | oveq12d | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( ( F ` i ) ( +g ` R ) ( F ` j ) ) = ( ( P .^ i ) ( +g ` R ) ( P .^ j ) ) ) |
| 69 | 61 67 68 | 3eqtr4d | |- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( F ` ( i ( +g ` R ) j ) ) = ( ( F ` i ) ( +g ` R ) ( F ` j ) ) ) |
| 70 | 1 7 7 8 8 9 9 26 52 1 53 53 58 69 | isrhmd | |- ( ph -> F e. ( R RingHom R ) ) |