This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors C --> D , and the second parameter in D . (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlfcl.e | |- E = ( C evalF D ) |
|
| evlfcl.q | |- Q = ( C FuncCat D ) |
||
| evlfcl.c | |- ( ph -> C e. Cat ) |
||
| evlfcl.d | |- ( ph -> D e. Cat ) |
||
| Assertion | evlfcl | |- ( ph -> E e. ( ( Q Xc. C ) Func D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlfcl.e | |- E = ( C evalF D ) |
|
| 2 | evlfcl.q | |- Q = ( C FuncCat D ) |
|
| 3 | evlfcl.c | |- ( ph -> C e. Cat ) |
|
| 4 | evlfcl.d | |- ( ph -> D e. Cat ) |
|
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 7 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 8 | eqid | |- ( C Nat D ) = ( C Nat D ) |
|
| 9 | 1 3 4 5 6 7 8 | evlfval | |- ( ph -> E = <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) |
| 10 | ovex | |- ( C Func D ) e. _V |
|
| 11 | fvex | |- ( Base ` C ) e. _V |
|
| 12 | 10 11 | mpoex | |- ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) e. _V |
| 13 | 10 11 | xpex | |- ( ( C Func D ) X. ( Base ` C ) ) e. _V |
| 14 | 13 13 | mpoex | |- ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) e. _V |
| 15 | 12 14 | opelvv | |- <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. e. ( _V X. _V ) |
| 16 | 9 15 | eqeltrdi | |- ( ph -> E e. ( _V X. _V ) ) |
| 17 | 1st2nd2 | |- ( E e. ( _V X. _V ) -> E = <. ( 1st ` E ) , ( 2nd ` E ) >. ) |
|
| 18 | 16 17 | syl | |- ( ph -> E = <. ( 1st ` E ) , ( 2nd ` E ) >. ) |
| 19 | eqid | |- ( Q Xc. C ) = ( Q Xc. C ) |
|
| 20 | 2 | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| 21 | 19 20 5 | xpcbas | |- ( ( C Func D ) X. ( Base ` C ) ) = ( Base ` ( Q Xc. C ) ) |
| 22 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 23 | eqid | |- ( Hom ` ( Q Xc. C ) ) = ( Hom ` ( Q Xc. C ) ) |
|
| 24 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 25 | eqid | |- ( Id ` ( Q Xc. C ) ) = ( Id ` ( Q Xc. C ) ) |
|
| 26 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 27 | eqid | |- ( comp ` ( Q Xc. C ) ) = ( comp ` ( Q Xc. C ) ) |
|
| 28 | 2 3 4 | fuccat | |- ( ph -> Q e. Cat ) |
| 29 | 19 28 3 | xpccat | |- ( ph -> ( Q Xc. C ) e. Cat ) |
| 30 | relfunc | |- Rel ( C Func D ) |
|
| 31 | simpr | |- ( ( ph /\ f e. ( C Func D ) ) -> f e. ( C Func D ) ) |
|
| 32 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ f e. ( C Func D ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
|
| 33 | 30 31 32 | sylancr | |- ( ( ph /\ f e. ( C Func D ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 34 | 5 22 33 | funcf1 | |- ( ( ph /\ f e. ( C Func D ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
| 35 | 34 | ffvelcdmda | |- ( ( ( ph /\ f e. ( C Func D ) ) /\ x e. ( Base ` C ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
| 36 | 35 | ralrimiva | |- ( ( ph /\ f e. ( C Func D ) ) -> A. x e. ( Base ` C ) ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
| 37 | 36 | ralrimiva | |- ( ph -> A. f e. ( C Func D ) A. x e. ( Base ` C ) ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
| 38 | eqid | |- ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) = ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) |
|
| 39 | 38 | fmpo | |- ( A. f e. ( C Func D ) A. x e. ( Base ` C ) ( ( 1st ` f ) ` x ) e. ( Base ` D ) <-> ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
| 40 | 37 39 | sylib | |- ( ph -> ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
| 41 | 12 14 | op1std | |- ( E = <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. -> ( 1st ` E ) = ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) ) |
| 42 | 9 41 | syl | |- ( ph -> ( 1st ` E ) = ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) ) |
| 43 | 42 | feq1d | |- ( ph -> ( ( 1st ` E ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) <-> ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) ) |
| 44 | 40 43 | mpbird | |- ( ph -> ( 1st ` E ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
| 45 | eqid | |- ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) = ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) |
|
| 46 | ovex | |- ( m ( C Nat D ) n ) e. _V |
|
| 47 | ovex | |- ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) e. _V |
|
| 48 | 46 47 | mpoex | |- ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) e. _V |
| 49 | 48 | csbex | |- [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) e. _V |
| 50 | 49 | csbex | |- [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) e. _V |
| 51 | 45 50 | fnmpoi | |- ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 52 | 12 14 | op2ndd | |- ( E = <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
| 53 | 9 52 | syl | |- ( ph -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
| 54 | 53 | fneq1d | |- ( ph -> ( ( 2nd ` E ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) <-> ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) ) ) |
| 55 | 51 54 | mpbiri | |- ( ph -> ( 2nd ` E ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) ) |
| 56 | 4 | ad2antrr | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> D e. Cat ) |
| 57 | 56 | adantr | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> D e. Cat ) |
| 58 | simplrl | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> f e. ( C Func D ) ) |
|
| 59 | 30 58 32 | sylancr | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 60 | 5 22 59 | funcf1 | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
| 61 | 60 | adantr | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
| 62 | simplrr | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> u e. ( Base ` C ) ) |
|
| 63 | 62 | adantr | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> u e. ( Base ` C ) ) |
| 64 | 61 63 | ffvelcdmd | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( 1st ` f ) ` u ) e. ( Base ` D ) ) |
| 65 | simplrr | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> v e. ( Base ` C ) ) |
|
| 66 | 61 65 | ffvelcdmd | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( 1st ` f ) ` v ) e. ( Base ` D ) ) |
| 67 | simprl | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> g e. ( C Func D ) ) |
|
| 68 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ g e. ( C Func D ) ) -> ( 1st ` g ) ( C Func D ) ( 2nd ` g ) ) |
|
| 69 | 30 67 68 | sylancr | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` g ) ( C Func D ) ( 2nd ` g ) ) |
| 70 | 5 22 69 | funcf1 | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` g ) : ( Base ` C ) --> ( Base ` D ) ) |
| 71 | 70 | adantr | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( 1st ` g ) : ( Base ` C ) --> ( Base ` D ) ) |
| 72 | 71 65 | ffvelcdmd | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( 1st ` g ) ` v ) e. ( Base ` D ) ) |
| 73 | simprr | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> v e. ( Base ` C ) ) |
|
| 74 | 5 6 24 59 62 73 | funcf2 | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( u ( 2nd ` f ) v ) : ( u ( Hom ` C ) v ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` v ) ) ) |
| 75 | 74 | adantr | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( u ( 2nd ` f ) v ) : ( u ( Hom ` C ) v ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` v ) ) ) |
| 76 | simprr | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> h e. ( u ( Hom ` C ) v ) ) |
|
| 77 | 75 76 | ffvelcdmd | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( u ( 2nd ` f ) v ) ` h ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` v ) ) ) |
| 78 | simprl | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> a e. ( f ( C Nat D ) g ) ) |
|
| 79 | 8 78 | nat1st2nd | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> a e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 80 | 8 79 5 24 65 | natcl | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( a ` v ) e. ( ( ( 1st ` f ) ` v ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 81 | 22 24 7 57 64 66 72 77 80 | catcocl | |- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 82 | 81 | ralrimivva | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> A. a e. ( f ( C Nat D ) g ) A. h e. ( u ( Hom ` C ) v ) ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 83 | eqid | |- ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) = ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) |
|
| 84 | 83 | fmpo | |- ( A. a e. ( f ( C Nat D ) g ) A. h e. ( u ( Hom ` C ) v ) ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) <-> ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 85 | 82 84 | sylib | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 86 | 3 | ad2antrr | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> C e. Cat ) |
| 87 | eqid | |- ( <. f , u >. ( 2nd ` E ) <. g , v >. ) = ( <. f , u >. ( 2nd ` E ) <. g , v >. ) |
|
| 88 | 1 86 56 5 6 7 8 58 67 62 73 87 | evlf2 | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) = ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) ) |
| 89 | 88 | feq1d | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) <-> ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) ) |
| 90 | 85 89 | mpbird | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 91 | 2 8 | fuchom | |- ( C Nat D ) = ( Hom ` Q ) |
| 92 | 19 20 5 91 6 58 62 67 73 23 | xpchom2 | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) = ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) ) |
| 93 | 1 86 56 5 58 62 | evlf1 | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( f ( 1st ` E ) u ) = ( ( 1st ` f ) ` u ) ) |
| 94 | 1 86 56 5 67 73 | evlf1 | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( g ( 1st ` E ) v ) = ( ( 1st ` g ) ` v ) ) |
| 95 | 93 94 | oveq12d | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) = ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 96 | 92 95 | feq23d | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) <-> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) ) |
| 97 | 90 96 | mpbird | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 98 | 97 | ralrimivva | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 99 | 98 | ralrimivva | |- ( ph -> A. f e. ( C Func D ) A. u e. ( Base ` C ) A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 100 | oveq2 | |- ( y = <. g , v >. -> ( x ( 2nd ` E ) y ) = ( x ( 2nd ` E ) <. g , v >. ) ) |
|
| 101 | oveq2 | |- ( y = <. g , v >. -> ( x ( Hom ` ( Q Xc. C ) ) y ) = ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) ) |
|
| 102 | fveq2 | |- ( y = <. g , v >. -> ( ( 1st ` E ) ` y ) = ( ( 1st ` E ) ` <. g , v >. ) ) |
|
| 103 | df-ov | |- ( g ( 1st ` E ) v ) = ( ( 1st ` E ) ` <. g , v >. ) |
|
| 104 | 102 103 | eqtr4di | |- ( y = <. g , v >. -> ( ( 1st ` E ) ` y ) = ( g ( 1st ` E ) v ) ) |
| 105 | 104 | oveq2d | |- ( y = <. g , v >. -> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) = ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 106 | 100 101 105 | feq123d | |- ( y = <. g , v >. -> ( ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
| 107 | 106 | ralxp | |- ( A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 108 | oveq1 | |- ( x = <. f , u >. -> ( x ( 2nd ` E ) <. g , v >. ) = ( <. f , u >. ( 2nd ` E ) <. g , v >. ) ) |
|
| 109 | oveq1 | |- ( x = <. f , u >. -> ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) = ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) ) |
|
| 110 | fveq2 | |- ( x = <. f , u >. -> ( ( 1st ` E ) ` x ) = ( ( 1st ` E ) ` <. f , u >. ) ) |
|
| 111 | df-ov | |- ( f ( 1st ` E ) u ) = ( ( 1st ` E ) ` <. f , u >. ) |
|
| 112 | 110 111 | eqtr4di | |- ( x = <. f , u >. -> ( ( 1st ` E ) ` x ) = ( f ( 1st ` E ) u ) ) |
| 113 | 112 | oveq1d | |- ( x = <. f , u >. -> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) = ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 114 | 108 109 113 | feq123d | |- ( x = <. f , u >. -> ( ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) <-> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
| 115 | 114 | 2ralbidv | |- ( x = <. f , u >. -> ( A. g e. ( C Func D ) A. v e. ( Base ` C ) ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) <-> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
| 116 | 107 115 | bitrid | |- ( x = <. f , u >. -> ( A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
| 117 | 116 | ralxp | |- ( A. x e. ( ( C Func D ) X. ( Base ` C ) ) A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> A. f e. ( C Func D ) A. u e. ( Base ` C ) A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 118 | 99 117 | sylibr | |- ( ph -> A. x e. ( ( C Func D ) X. ( Base ` C ) ) A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
| 119 | 118 | r19.21bi | |- ( ( ph /\ x e. ( ( C Func D ) X. ( Base ` C ) ) ) -> A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
| 120 | 119 | r19.21bi | |- ( ( ( ph /\ x e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) ) -> ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
| 121 | 120 | anasss | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) ) ) -> ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
| 122 | 28 | adantr | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> Q e. Cat ) |
| 123 | 3 | adantr | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> C e. Cat ) |
| 124 | eqid | |- ( Id ` Q ) = ( Id ` Q ) |
|
| 125 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 126 | simprl | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> f e. ( C Func D ) ) |
|
| 127 | simprr | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> u e. ( Base ` C ) ) |
|
| 128 | 19 122 123 20 5 124 125 25 126 127 | xpcid | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) = <. ( ( Id ` Q ) ` f ) , ( ( Id ` C ) ` u ) >. ) |
| 129 | 128 | fveq2d | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` <. ( ( Id ` Q ) ` f ) , ( ( Id ` C ) ` u ) >. ) ) |
| 130 | df-ov | |- ( ( ( Id ` Q ) ` f ) ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ( ( Id ` C ) ` u ) ) = ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` <. ( ( Id ` Q ) ` f ) , ( ( Id ` C ) ` u ) >. ) |
|
| 131 | 129 130 | eqtr4di | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( ( Id ` Q ) ` f ) ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ( ( Id ` C ) ` u ) ) ) |
| 132 | 4 | adantr | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> D e. Cat ) |
| 133 | eqid | |- ( <. f , u >. ( 2nd ` E ) <. f , u >. ) = ( <. f , u >. ( 2nd ` E ) <. f , u >. ) |
|
| 134 | 20 91 124 122 126 | catidcl | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` Q ) ` f ) e. ( f ( C Nat D ) f ) ) |
| 135 | 5 6 125 123 127 | catidcl | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` C ) ` u ) e. ( u ( Hom ` C ) u ) ) |
| 136 | 1 123 132 5 6 7 8 126 126 127 127 133 134 135 | evlf2val | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` Q ) ` f ) ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ( ( Id ` C ) ` u ) ) = ( ( ( ( Id ` Q ) ` f ) ` u ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) ) ) |
| 137 | 30 126 32 | sylancr | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 138 | 5 22 137 | funcf1 | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
| 139 | 138 127 | ffvelcdmd | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( 1st ` f ) ` u ) e. ( Base ` D ) ) |
| 140 | 22 24 26 132 139 | catidcl | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` u ) ) ) |
| 141 | 22 24 26 132 139 7 139 140 | catlid | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 142 | 2 124 26 126 | fucid | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` Q ) ` f ) = ( ( Id ` D ) o. ( 1st ` f ) ) ) |
| 143 | 142 | fveq1d | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` Q ) ` f ) ` u ) = ( ( ( Id ` D ) o. ( 1st ` f ) ) ` u ) ) |
| 144 | fvco3 | |- ( ( ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) /\ u e. ( Base ` C ) ) -> ( ( ( Id ` D ) o. ( 1st ` f ) ) ` u ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
|
| 145 | 138 127 144 | syl2anc | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` D ) o. ( 1st ` f ) ) ` u ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 146 | 143 145 | eqtrd | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` Q ) ` f ) ` u ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 147 | 5 125 26 137 127 | funcid | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 148 | 146 147 | oveq12d | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( ( Id ` Q ) ` f ) ` u ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) ) = ( ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) ) |
| 149 | 1 123 132 5 126 127 | evlf1 | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( f ( 1st ` E ) u ) = ( ( 1st ` f ) ` u ) ) |
| 150 | 149 | fveq2d | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 151 | 141 148 150 | 3eqtr4d | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( ( Id ` Q ) ` f ) ` u ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
| 152 | 131 136 151 | 3eqtrd | |- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
| 153 | 152 | ralrimivva | |- ( ph -> A. f e. ( C Func D ) A. u e. ( Base ` C ) ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
| 154 | id | |- ( x = <. f , u >. -> x = <. f , u >. ) |
|
| 155 | 154 154 | oveq12d | |- ( x = <. f , u >. -> ( x ( 2nd ` E ) x ) = ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ) |
| 156 | fveq2 | |- ( x = <. f , u >. -> ( ( Id ` ( Q Xc. C ) ) ` x ) = ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) |
|
| 157 | 155 156 | fveq12d | |- ( x = <. f , u >. -> ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) ) |
| 158 | 112 | fveq2d | |- ( x = <. f , u >. -> ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
| 159 | 157 158 | eqeq12d | |- ( x = <. f , u >. -> ( ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) <-> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) ) |
| 160 | 159 | ralxp | |- ( A. x e. ( ( C Func D ) X. ( Base ` C ) ) ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) <-> A. f e. ( C Func D ) A. u e. ( Base ` C ) ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
| 161 | 153 160 | sylibr | |- ( ph -> A. x e. ( ( C Func D ) X. ( Base ` C ) ) ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) ) |
| 162 | 161 | r19.21bi | |- ( ( ph /\ x e. ( ( C Func D ) X. ( Base ` C ) ) ) -> ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) ) |
| 163 | 3 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> C e. Cat ) |
| 164 | 4 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> D e. Cat ) |
| 165 | simp21 | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> x e. ( ( C Func D ) X. ( Base ` C ) ) ) |
|
| 166 | 1st2nd2 | |- ( x e. ( ( C Func D ) X. ( Base ` C ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 167 | 165 166 | syl | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 168 | 167 165 | eqeltrrd | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 169 | opelxp | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( C Func D ) X. ( Base ` C ) ) <-> ( ( 1st ` x ) e. ( C Func D ) /\ ( 2nd ` x ) e. ( Base ` C ) ) ) |
|
| 170 | 168 169 | sylib | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` x ) e. ( C Func D ) /\ ( 2nd ` x ) e. ( Base ` C ) ) ) |
| 171 | simp22 | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> y e. ( ( C Func D ) X. ( Base ` C ) ) ) |
|
| 172 | 1st2nd2 | |- ( y e. ( ( C Func D ) X. ( Base ` C ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
|
| 173 | 171 172 | syl | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 174 | 173 171 | eqeltrrd | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 175 | opelxp | |- ( <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( ( C Func D ) X. ( Base ` C ) ) <-> ( ( 1st ` y ) e. ( C Func D ) /\ ( 2nd ` y ) e. ( Base ` C ) ) ) |
|
| 176 | 174 175 | sylib | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` y ) e. ( C Func D ) /\ ( 2nd ` y ) e. ( Base ` C ) ) ) |
| 177 | simp23 | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> z e. ( ( C Func D ) X. ( Base ` C ) ) ) |
|
| 178 | 1st2nd2 | |- ( z e. ( ( C Func D ) X. ( Base ` C ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
|
| 179 | 177 178 | syl | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 180 | 179 177 | eqeltrrd | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 181 | opelxp | |- ( <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( ( C Func D ) X. ( Base ` C ) ) <-> ( ( 1st ` z ) e. ( C Func D ) /\ ( 2nd ` z ) e. ( Base ` C ) ) ) |
|
| 182 | 180 181 | sylib | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` z ) e. ( C Func D ) /\ ( 2nd ` z ) e. ( Base ` C ) ) ) |
| 183 | simp3l | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> f e. ( x ( Hom ` ( Q Xc. C ) ) y ) ) |
|
| 184 | 19 21 91 6 23 165 171 | xpchom | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( x ( Hom ` ( Q Xc. C ) ) y ) = ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 185 | 183 184 | eleqtrd | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> f e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 186 | 1st2nd2 | |- ( f e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
|
| 187 | 185 186 | syl | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 188 | 187 185 | eqeltrrd | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` f ) , ( 2nd ` f ) >. e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 189 | opelxp | |- ( <. ( 1st ` f ) , ( 2nd ` f ) >. e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) <-> ( ( 1st ` f ) e. ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) /\ ( 2nd ` f ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
|
| 190 | 188 189 | sylib | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` f ) e. ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) /\ ( 2nd ` f ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 191 | simp3r | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) |
|
| 192 | 19 21 91 6 23 171 177 | xpchom | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( y ( Hom ` ( Q Xc. C ) ) z ) = ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 193 | 191 192 | eleqtrd | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> g e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 194 | 1st2nd2 | |- ( g e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
|
| 195 | 193 194 | syl | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 196 | 195 193 | eqeltrrd | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` g ) , ( 2nd ` g ) >. e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 197 | opelxp | |- ( <. ( 1st ` g ) , ( 2nd ` g ) >. e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) <-> ( ( 1st ` g ) e. ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) /\ ( 2nd ` g ) e. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
|
| 198 | 196 197 | sylib | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` g ) e. ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) /\ ( 2nd ` g ) e. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 199 | 1 2 163 164 8 170 176 182 190 198 | evlfcllem | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) = ( ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ( <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) ) |
| 200 | 167 179 | oveq12d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( x ( 2nd ` E ) z ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 201 | 167 173 | opeq12d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. x , y >. = <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ) |
| 202 | 201 179 | oveq12d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) = ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 203 | 202 195 187 | oveq123d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) f ) = ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
| 204 | 200 203 | fveq12d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` E ) z ) ` ( g ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) f ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) ) |
| 205 | 167 | fveq2d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` E ) ` x ) = ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 206 | 173 | fveq2d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` E ) ` y ) = ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 207 | 205 206 | opeq12d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. = <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ) |
| 208 | 179 | fveq2d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` E ) ` z ) = ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 209 | 207 208 | oveq12d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. ( comp ` D ) ( ( 1st ` E ) ` z ) ) = ( <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) ) |
| 210 | 173 179 | oveq12d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( y ( 2nd ` E ) z ) = ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 211 | 210 195 | fveq12d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( y ( 2nd ` E ) z ) ` g ) = ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 212 | 167 173 | oveq12d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( x ( 2nd ` E ) y ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 213 | 212 187 | fveq12d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` E ) y ) ` f ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
| 214 | 209 211 213 | oveq123d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( ( y ( 2nd ` E ) z ) ` g ) ( <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. ( comp ` D ) ( ( 1st ` E ) ` z ) ) ( ( x ( 2nd ` E ) y ) ` f ) ) = ( ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ( <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) ) |
| 215 | 199 204 214 | 3eqtr4d | |- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` E ) z ) ` ( g ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) f ) ) = ( ( ( y ( 2nd ` E ) z ) ` g ) ( <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. ( comp ` D ) ( ( 1st ` E ) ` z ) ) ( ( x ( 2nd ` E ) y ) ` f ) ) ) |
| 216 | 21 22 23 24 25 26 27 7 29 4 44 55 121 162 215 | isfuncd | |- ( ph -> ( 1st ` E ) ( ( Q Xc. C ) Func D ) ( 2nd ` E ) ) |
| 217 | df-br | |- ( ( 1st ` E ) ( ( Q Xc. C ) Func D ) ( 2nd ` E ) <-> <. ( 1st ` E ) , ( 2nd ` E ) >. e. ( ( Q Xc. C ) Func D ) ) |
|
| 218 | 216 217 | sylib | |- ( ph -> <. ( 1st ` E ) , ( 2nd ` E ) >. e. ( ( Q Xc. C ) Func D ) ) |
| 219 | 18 218 | eqeltrd | |- ( ph -> E e. ( ( Q Xc. C ) Func D ) ) |