This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcixp.b | |- B = ( Base ` D ) |
|
| funcixp.h | |- H = ( Hom ` D ) |
||
| funcixp.j | |- J = ( Hom ` E ) |
||
| funcixp.f | |- ( ph -> F ( D Func E ) G ) |
||
| funcf2.x | |- ( ph -> X e. B ) |
||
| funcf2.y | |- ( ph -> Y e. B ) |
||
| Assertion | funcf2 | |- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcixp.b | |- B = ( Base ` D ) |
|
| 2 | funcixp.h | |- H = ( Hom ` D ) |
|
| 3 | funcixp.j | |- J = ( Hom ` E ) |
|
| 4 | funcixp.f | |- ( ph -> F ( D Func E ) G ) |
|
| 5 | funcf2.x | |- ( ph -> X e. B ) |
|
| 6 | funcf2.y | |- ( ph -> Y e. B ) |
|
| 7 | df-ov | |- ( X G Y ) = ( G ` <. X , Y >. ) |
|
| 8 | 1 2 3 4 | funcixp | |- ( ph -> G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) ) |
| 9 | 5 6 | opelxpd | |- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 10 | 2fveq3 | |- ( z = <. X , Y >. -> ( F ` ( 1st ` z ) ) = ( F ` ( 1st ` <. X , Y >. ) ) ) |
|
| 11 | 2fveq3 | |- ( z = <. X , Y >. -> ( F ` ( 2nd ` z ) ) = ( F ` ( 2nd ` <. X , Y >. ) ) ) |
|
| 12 | 10 11 | oveq12d | |- ( z = <. X , Y >. -> ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) = ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ) |
| 13 | fveq2 | |- ( z = <. X , Y >. -> ( H ` z ) = ( H ` <. X , Y >. ) ) |
|
| 14 | df-ov | |- ( X H Y ) = ( H ` <. X , Y >. ) |
|
| 15 | 13 14 | eqtr4di | |- ( z = <. X , Y >. -> ( H ` z ) = ( X H Y ) ) |
| 16 | 12 15 | oveq12d | |- ( z = <. X , Y >. -> ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) = ( ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ^m ( X H Y ) ) ) |
| 17 | 16 | fvixp | |- ( ( G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) /\ <. X , Y >. e. ( B X. B ) ) -> ( G ` <. X , Y >. ) e. ( ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ^m ( X H Y ) ) ) |
| 18 | 8 9 17 | syl2anc | |- ( ph -> ( G ` <. X , Y >. ) e. ( ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ^m ( X H Y ) ) ) |
| 19 | 7 18 | eqeltrid | |- ( ph -> ( X G Y ) e. ( ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ^m ( X H Y ) ) ) |
| 20 | op1stg | |- ( ( X e. B /\ Y e. B ) -> ( 1st ` <. X , Y >. ) = X ) |
|
| 21 | 20 | fveq2d | |- ( ( X e. B /\ Y e. B ) -> ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) ) |
| 22 | op2ndg | |- ( ( X e. B /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
|
| 23 | 22 | fveq2d | |- ( ( X e. B /\ Y e. B ) -> ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) |
| 24 | 21 23 | oveq12d | |- ( ( X e. B /\ Y e. B ) -> ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
| 25 | 5 6 24 | syl2anc | |- ( ph -> ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
| 26 | 25 | oveq1d | |- ( ph -> ( ( ( F ` ( 1st ` <. X , Y >. ) ) J ( F ` ( 2nd ` <. X , Y >. ) ) ) ^m ( X H Y ) ) = ( ( ( F ` X ) J ( F ` Y ) ) ^m ( X H Y ) ) ) |
| 27 | 19 26 | eleqtrd | |- ( ph -> ( X G Y ) e. ( ( ( F ` X ) J ( F ` Y ) ) ^m ( X H Y ) ) ) |
| 28 | elmapi | |- ( ( X G Y ) e. ( ( ( F ` X ) J ( F ` Y ) ) ^m ( X H Y ) ) -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |
|
| 29 | 27 28 | syl | |- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |