This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natrcl.1 | |- N = ( C Nat D ) |
|
| natixp.2 | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
||
| natixp.b | |- B = ( Base ` C ) |
||
| natixp.j | |- J = ( Hom ` D ) |
||
| natcl.1 | |- ( ph -> X e. B ) |
||
| Assertion | natcl | |- ( ph -> ( A ` X ) e. ( ( F ` X ) J ( K ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | |- N = ( C Nat D ) |
|
| 2 | natixp.2 | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
|
| 3 | natixp.b | |- B = ( Base ` C ) |
|
| 4 | natixp.j | |- J = ( Hom ` D ) |
|
| 5 | natcl.1 | |- ( ph -> X e. B ) |
|
| 6 | 1 2 3 4 | natixp | |- ( ph -> A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) ) |
| 7 | fveq2 | |- ( x = X -> ( F ` x ) = ( F ` X ) ) |
|
| 8 | fveq2 | |- ( x = X -> ( K ` x ) = ( K ` X ) ) |
|
| 9 | 7 8 | oveq12d | |- ( x = X -> ( ( F ` x ) J ( K ` x ) ) = ( ( F ` X ) J ( K ` X ) ) ) |
| 10 | 9 | fvixp | |- ( ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ X e. B ) -> ( A ` X ) e. ( ( F ` X ) J ( K ` X ) ) ) |
| 11 | 6 5 10 | syl2anc | |- ( ph -> ( A ` X ) e. ( ( F ` X ) J ( K ` X ) ) ) |