This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natrcl.1 | |- N = ( C Nat D ) |
|
| nat1st2nd.2 | |- ( ph -> A e. ( F N G ) ) |
||
| Assertion | nat1st2nd | |- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | |- N = ( C Nat D ) |
|
| 2 | nat1st2nd.2 | |- ( ph -> A e. ( F N G ) ) |
|
| 3 | relfunc | |- Rel ( C Func D ) |
|
| 4 | 1 | natrcl | |- ( A e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 5 | 2 4 | syl | |- ( ph -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 6 | 5 | simpld | |- ( ph -> F e. ( C Func D ) ) |
| 7 | 1st2nd | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 8 | 3 6 7 | sylancr | |- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 9 | 5 | simprd | |- ( ph -> G e. ( C Func D ) ) |
| 10 | 1st2nd | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
|
| 11 | 3 9 10 | sylancr | |- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 12 | 8 11 | oveq12d | |- ( ph -> ( F N G ) = ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 13 | 2 12 | eleqtrd | |- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |