This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evlfcl . (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlfcl.e | |- E = ( C evalF D ) |
|
| evlfcl.q | |- Q = ( C FuncCat D ) |
||
| evlfcl.c | |- ( ph -> C e. Cat ) |
||
| evlfcl.d | |- ( ph -> D e. Cat ) |
||
| evlfcl.n | |- N = ( C Nat D ) |
||
| evlfcl.f | |- ( ph -> ( F e. ( C Func D ) /\ X e. ( Base ` C ) ) ) |
||
| evlfcl.g | |- ( ph -> ( G e. ( C Func D ) /\ Y e. ( Base ` C ) ) ) |
||
| evlfcl.h | |- ( ph -> ( H e. ( C Func D ) /\ Z e. ( Base ` C ) ) ) |
||
| evlfcl.a | |- ( ph -> ( A e. ( F N G ) /\ K e. ( X ( Hom ` C ) Y ) ) ) |
||
| evlfcl.b | |- ( ph -> ( B e. ( G N H ) /\ L e. ( Y ( Hom ` C ) Z ) ) ) |
||
| Assertion | evlfcllem | |- ( ph -> ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` ( <. B , L >. ( <. <. F , X >. , <. G , Y >. >. ( comp ` ( Q Xc. C ) ) <. H , Z >. ) <. A , K >. ) ) = ( ( ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) ` <. B , L >. ) ( <. ( ( 1st ` E ) ` <. F , X >. ) , ( ( 1st ` E ) ` <. G , Y >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. H , Z >. ) ) ( ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) ` <. A , K >. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlfcl.e | |- E = ( C evalF D ) |
|
| 2 | evlfcl.q | |- Q = ( C FuncCat D ) |
|
| 3 | evlfcl.c | |- ( ph -> C e. Cat ) |
|
| 4 | evlfcl.d | |- ( ph -> D e. Cat ) |
|
| 5 | evlfcl.n | |- N = ( C Nat D ) |
|
| 6 | evlfcl.f | |- ( ph -> ( F e. ( C Func D ) /\ X e. ( Base ` C ) ) ) |
|
| 7 | evlfcl.g | |- ( ph -> ( G e. ( C Func D ) /\ Y e. ( Base ` C ) ) ) |
|
| 8 | evlfcl.h | |- ( ph -> ( H e. ( C Func D ) /\ Z e. ( Base ` C ) ) ) |
|
| 9 | evlfcl.a | |- ( ph -> ( A e. ( F N G ) /\ K e. ( X ( Hom ` C ) Y ) ) ) |
|
| 10 | evlfcl.b | |- ( ph -> ( B e. ( G N H ) /\ L e. ( Y ( Hom ` C ) Z ) ) ) |
|
| 11 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 12 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 13 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 14 | 6 | simpld | |- ( ph -> F e. ( C Func D ) ) |
| 15 | 8 | simpld | |- ( ph -> H e. ( C Func D ) ) |
| 16 | 6 | simprd | |- ( ph -> X e. ( Base ` C ) ) |
| 17 | 8 | simprd | |- ( ph -> Z e. ( Base ` C ) ) |
| 18 | eqid | |- ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) = ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) |
|
| 19 | eqid | |- ( comp ` Q ) = ( comp ` Q ) |
|
| 20 | 9 | simpld | |- ( ph -> A e. ( F N G ) ) |
| 21 | 10 | simpld | |- ( ph -> B e. ( G N H ) ) |
| 22 | 2 5 19 20 21 | fuccocl | |- ( ph -> ( B ( <. F , G >. ( comp ` Q ) H ) A ) e. ( F N H ) ) |
| 23 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 24 | 7 | simprd | |- ( ph -> Y e. ( Base ` C ) ) |
| 25 | 9 | simprd | |- ( ph -> K e. ( X ( Hom ` C ) Y ) ) |
| 26 | 10 | simprd | |- ( ph -> L e. ( Y ( Hom ` C ) Z ) ) |
| 27 | 11 12 23 3 16 24 17 25 26 | catcocl | |- ( ph -> ( L ( <. X , Y >. ( comp ` C ) Z ) K ) e. ( X ( Hom ` C ) Z ) ) |
| 28 | 1 3 4 11 12 13 5 14 15 16 17 18 22 27 | evlf2val | |- ( ph -> ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) = ( ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ` Z ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) ) |
| 29 | 2 5 11 13 19 20 21 17 | fuccoval | |- ( ph -> ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ` Z ) = ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ) |
| 30 | 29 | oveq1d | |- ( ph -> ( ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ` Z ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) ) |
| 31 | relfunc | |- Rel ( C Func D ) |
|
| 32 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 33 | 31 14 32 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 34 | 11 12 23 13 33 16 24 17 25 26 | funcco | |- ( ph -> ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) = ( ( ( Y ( 2nd ` F ) Z ) ` L ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` F ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) |
| 35 | 34 | oveq2d | |- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( ( Y ( 2nd ` F ) Z ) ` L ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` F ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 36 | 5 20 | nat1st2nd | |- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 37 | 5 36 11 12 13 24 17 26 | nati | |- ( ph -> ( ( A ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) = ( ( ( Y ( 2nd ` G ) Z ) ` L ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( A ` Y ) ) ) |
| 38 | 37 | oveq2d | |- ( ph -> ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) ) = ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( ( Y ( 2nd ` G ) Z ) ` L ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( A ` Y ) ) ) ) |
| 39 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 40 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 41 | 11 39 33 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 42 | 41 24 | ffvelcdmd | |- ( ph -> ( ( 1st ` F ) ` Y ) e. ( Base ` D ) ) |
| 43 | 41 17 | ffvelcdmd | |- ( ph -> ( ( 1st ` F ) ` Z ) e. ( Base ` D ) ) |
| 44 | 7 | simpld | |- ( ph -> G e. ( C Func D ) ) |
| 45 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
|
| 46 | 31 44 45 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 47 | 11 39 46 | funcf1 | |- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` D ) ) |
| 48 | 47 17 | ffvelcdmd | |- ( ph -> ( ( 1st ` G ) ` Z ) e. ( Base ` D ) ) |
| 49 | 11 12 40 33 24 17 | funcf2 | |- ( ph -> ( Y ( 2nd ` F ) Z ) : ( Y ( Hom ` C ) Z ) --> ( ( ( 1st ` F ) ` Y ) ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) ) |
| 50 | 49 26 | ffvelcdmd | |- ( ph -> ( ( Y ( 2nd ` F ) Z ) ` L ) e. ( ( ( 1st ` F ) ` Y ) ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) ) |
| 51 | 5 36 11 40 17 | natcl | |- ( ph -> ( A ` Z ) e. ( ( ( 1st ` F ) ` Z ) ( Hom ` D ) ( ( 1st ` G ) ` Z ) ) ) |
| 52 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ H e. ( C Func D ) ) -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
|
| 53 | 31 15 52 | sylancr | |- ( ph -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
| 54 | 11 39 53 | funcf1 | |- ( ph -> ( 1st ` H ) : ( Base ` C ) --> ( Base ` D ) ) |
| 55 | 54 17 | ffvelcdmd | |- ( ph -> ( ( 1st ` H ) ` Z ) e. ( Base ` D ) ) |
| 56 | 5 21 | nat1st2nd | |- ( ph -> B e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
| 57 | 5 56 11 40 17 | natcl | |- ( ph -> ( B ` Z ) e. ( ( ( 1st ` G ) ` Z ) ( Hom ` D ) ( ( 1st ` H ) ` Z ) ) ) |
| 58 | 39 40 13 4 42 43 48 50 51 55 57 | catass | |- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) = ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) ) ) |
| 59 | 47 24 | ffvelcdmd | |- ( ph -> ( ( 1st ` G ) ` Y ) e. ( Base ` D ) ) |
| 60 | 5 36 11 40 24 | natcl | |- ( ph -> ( A ` Y ) e. ( ( ( 1st ` F ) ` Y ) ( Hom ` D ) ( ( 1st ` G ) ` Y ) ) ) |
| 61 | 11 12 40 46 24 17 | funcf2 | |- ( ph -> ( Y ( 2nd ` G ) Z ) : ( Y ( Hom ` C ) Z ) --> ( ( ( 1st ` G ) ` Y ) ( Hom ` D ) ( ( 1st ` G ) ` Z ) ) ) |
| 62 | 61 26 | ffvelcdmd | |- ( ph -> ( ( Y ( 2nd ` G ) Z ) ` L ) e. ( ( ( 1st ` G ) ` Y ) ( Hom ` D ) ( ( 1st ` G ) ` Z ) ) ) |
| 63 | 39 40 13 4 42 59 48 60 62 55 57 | catass | |- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Y ) ) = ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( ( Y ( 2nd ` G ) Z ) ` L ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( A ` Y ) ) ) ) |
| 64 | 38 58 63 | 3eqtr4d | |- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Y ) ) ) |
| 65 | 64 | oveq1d | |- ( ph -> ( ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) = ( ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Y ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) |
| 66 | 41 16 | ffvelcdmd | |- ( ph -> ( ( 1st ` F ) ` X ) e. ( Base ` D ) ) |
| 67 | 11 12 40 33 16 24 | funcf2 | |- ( ph -> ( X ( 2nd ` F ) Y ) : ( X ( Hom ` C ) Y ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` D ) ( ( 1st ` F ) ` Y ) ) ) |
| 68 | 67 25 | ffvelcdmd | |- ( ph -> ( ( X ( 2nd ` F ) Y ) ` K ) e. ( ( ( 1st ` F ) ` X ) ( Hom ` D ) ( ( 1st ` F ) ` Y ) ) ) |
| 69 | 39 40 13 4 43 48 55 51 57 | catcocl | |- ( ph -> ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) e. ( ( ( 1st ` F ) ` Z ) ( Hom ` D ) ( ( 1st ` H ) ` Z ) ) ) |
| 70 | 39 40 13 4 66 42 43 68 50 55 69 | catass | |- ( ph -> ( ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( ( Y ( 2nd ` F ) Z ) ` L ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` F ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 71 | 39 40 13 4 59 48 55 62 57 | catcocl | |- ( ph -> ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) e. ( ( ( 1st ` G ) ` Y ) ( Hom ` D ) ( ( 1st ` H ) ` Z ) ) ) |
| 72 | 39 40 13 4 66 42 59 68 60 55 71 | catass | |- ( ph -> ( ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Y ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 73 | 65 70 72 | 3eqtr3d | |- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( ( Y ( 2nd ` F ) Z ) ` L ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` F ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 74 | 35 73 | eqtrd | |- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 75 | 28 30 74 | 3eqtrd | |- ( ph -> ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 76 | eqid | |- ( Q Xc. C ) = ( Q Xc. C ) |
|
| 77 | 2 | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| 78 | 2 5 | fuchom | |- N = ( Hom ` Q ) |
| 79 | eqid | |- ( comp ` ( Q Xc. C ) ) = ( comp ` ( Q Xc. C ) ) |
|
| 80 | 76 77 11 78 12 14 16 44 24 19 23 79 15 17 20 25 21 26 | xpcco2 | |- ( ph -> ( <. B , L >. ( <. <. F , X >. , <. G , Y >. >. ( comp ` ( Q Xc. C ) ) <. H , Z >. ) <. A , K >. ) = <. ( B ( <. F , G >. ( comp ` Q ) H ) A ) , ( L ( <. X , Y >. ( comp ` C ) Z ) K ) >. ) |
| 81 | 80 | fveq2d | |- ( ph -> ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` ( <. B , L >. ( <. <. F , X >. , <. G , Y >. >. ( comp ` ( Q Xc. C ) ) <. H , Z >. ) <. A , K >. ) ) = ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` <. ( B ( <. F , G >. ( comp ` Q ) H ) A ) , ( L ( <. X , Y >. ( comp ` C ) Z ) K ) >. ) ) |
| 82 | df-ov | |- ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) = ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` <. ( B ( <. F , G >. ( comp ` Q ) H ) A ) , ( L ( <. X , Y >. ( comp ` C ) Z ) K ) >. ) |
|
| 83 | 81 82 | eqtr4di | |- ( ph -> ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` ( <. B , L >. ( <. <. F , X >. , <. G , Y >. >. ( comp ` ( Q Xc. C ) ) <. H , Z >. ) <. A , K >. ) ) = ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) |
| 84 | df-ov | |- ( F ( 1st ` E ) X ) = ( ( 1st ` E ) ` <. F , X >. ) |
|
| 85 | 1 3 4 11 14 16 | evlf1 | |- ( ph -> ( F ( 1st ` E ) X ) = ( ( 1st ` F ) ` X ) ) |
| 86 | 84 85 | eqtr3id | |- ( ph -> ( ( 1st ` E ) ` <. F , X >. ) = ( ( 1st ` F ) ` X ) ) |
| 87 | df-ov | |- ( G ( 1st ` E ) Y ) = ( ( 1st ` E ) ` <. G , Y >. ) |
|
| 88 | 1 3 4 11 44 24 | evlf1 | |- ( ph -> ( G ( 1st ` E ) Y ) = ( ( 1st ` G ) ` Y ) ) |
| 89 | 87 88 | eqtr3id | |- ( ph -> ( ( 1st ` E ) ` <. G , Y >. ) = ( ( 1st ` G ) ` Y ) ) |
| 90 | 86 89 | opeq12d | |- ( ph -> <. ( ( 1st ` E ) ` <. F , X >. ) , ( ( 1st ` E ) ` <. G , Y >. ) >. = <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ) |
| 91 | df-ov | |- ( H ( 1st ` E ) Z ) = ( ( 1st ` E ) ` <. H , Z >. ) |
|
| 92 | 1 3 4 11 15 17 | evlf1 | |- ( ph -> ( H ( 1st ` E ) Z ) = ( ( 1st ` H ) ` Z ) ) |
| 93 | 91 92 | eqtr3id | |- ( ph -> ( ( 1st ` E ) ` <. H , Z >. ) = ( ( 1st ` H ) ` Z ) ) |
| 94 | 90 93 | oveq12d | |- ( ph -> ( <. ( ( 1st ` E ) ` <. F , X >. ) , ( ( 1st ` E ) ` <. G , Y >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. H , Z >. ) ) = ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ) |
| 95 | df-ov | |- ( B ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) L ) = ( ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) ` <. B , L >. ) |
|
| 96 | eqid | |- ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) = ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) |
|
| 97 | 1 3 4 11 12 13 5 44 15 24 17 96 21 26 | evlf2val | |- ( ph -> ( B ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) L ) = ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ) |
| 98 | 95 97 | eqtr3id | |- ( ph -> ( ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) ` <. B , L >. ) = ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ) |
| 99 | df-ov | |- ( A ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) K ) = ( ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) ` <. A , K >. ) |
|
| 100 | eqid | |- ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) = ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) |
|
| 101 | 1 3 4 11 12 13 5 14 44 16 24 100 20 25 | evlf2val | |- ( ph -> ( A ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) K ) = ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) |
| 102 | 99 101 | eqtr3id | |- ( ph -> ( ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) ` <. A , K >. ) = ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) |
| 103 | 94 98 102 | oveq123d | |- ( ph -> ( ( ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) ` <. B , L >. ) ( <. ( ( 1st ` E ) ` <. F , X >. ) , ( ( 1st ` E ) ` <. G , Y >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. H , Z >. ) ) ( ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) ` <. A , K >. ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 104 | 75 83 103 | 3eqtr4d | |- ( ph -> ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` ( <. B , L >. ( <. <. F , X >. , <. G , Y >. >. ( comp ` ( Q Xc. C ) ) <. H , Z >. ) <. A , K >. ) ) = ( ( ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) ` <. B , L >. ) ( <. ( ( 1st ` E ) ` <. F , X >. ) , ( ( 1st ` E ) ` <. G , Y >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. H , Z >. ) ) ( ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) ` <. A , K >. ) ) ) |