This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlfval.e | |- E = ( C evalF D ) |
|
| evlfval.c | |- ( ph -> C e. Cat ) |
||
| evlfval.d | |- ( ph -> D e. Cat ) |
||
| evlfval.b | |- B = ( Base ` C ) |
||
| evlfval.h | |- H = ( Hom ` C ) |
||
| evlfval.o | |- .x. = ( comp ` D ) |
||
| evlfval.n | |- N = ( C Nat D ) |
||
| evlf2.f | |- ( ph -> F e. ( C Func D ) ) |
||
| evlf2.g | |- ( ph -> G e. ( C Func D ) ) |
||
| evlf2.x | |- ( ph -> X e. B ) |
||
| evlf2.y | |- ( ph -> Y e. B ) |
||
| evlf2.l | |- L = ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) |
||
| Assertion | evlf2 | |- ( ph -> L = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlfval.e | |- E = ( C evalF D ) |
|
| 2 | evlfval.c | |- ( ph -> C e. Cat ) |
|
| 3 | evlfval.d | |- ( ph -> D e. Cat ) |
|
| 4 | evlfval.b | |- B = ( Base ` C ) |
|
| 5 | evlfval.h | |- H = ( Hom ` C ) |
|
| 6 | evlfval.o | |- .x. = ( comp ` D ) |
|
| 7 | evlfval.n | |- N = ( C Nat D ) |
|
| 8 | evlf2.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 9 | evlf2.g | |- ( ph -> G e. ( C Func D ) ) |
|
| 10 | evlf2.x | |- ( ph -> X e. B ) |
|
| 11 | evlf2.y | |- ( ph -> Y e. B ) |
|
| 12 | evlf2.l | |- L = ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) |
|
| 13 | 1 2 3 4 5 6 7 | evlfval | |- ( ph -> E = <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) |
| 14 | ovex | |- ( C Func D ) e. _V |
|
| 15 | 4 | fvexi | |- B e. _V |
| 16 | 14 15 | mpoex | |- ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) e. _V |
| 17 | 14 15 | xpex | |- ( ( C Func D ) X. B ) e. _V |
| 18 | 17 17 | mpoex | |- ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) e. _V |
| 19 | 16 18 | op2ndd | |- ( E = <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
| 20 | 13 19 | syl | |- ( ph -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
| 21 | fvexd | |- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` x ) e. _V ) |
|
| 22 | simprl | |- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> x = <. F , X >. ) |
|
| 23 | 22 | fveq2d | |- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` x ) = ( 1st ` <. F , X >. ) ) |
| 24 | op1stg | |- ( ( F e. ( C Func D ) /\ X e. B ) -> ( 1st ` <. F , X >. ) = F ) |
|
| 25 | 8 10 24 | syl2anc | |- ( ph -> ( 1st ` <. F , X >. ) = F ) |
| 26 | 25 | adantr | |- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` <. F , X >. ) = F ) |
| 27 | 23 26 | eqtrd | |- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` x ) = F ) |
| 28 | fvexd | |- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` y ) e. _V ) |
|
| 29 | simplrr | |- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> y = <. G , Y >. ) |
|
| 30 | 29 | fveq2d | |- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` y ) = ( 1st ` <. G , Y >. ) ) |
| 31 | op1stg | |- ( ( G e. ( C Func D ) /\ Y e. B ) -> ( 1st ` <. G , Y >. ) = G ) |
|
| 32 | 9 11 31 | syl2anc | |- ( ph -> ( 1st ` <. G , Y >. ) = G ) |
| 33 | 32 | ad2antrr | |- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` <. G , Y >. ) = G ) |
| 34 | 30 33 | eqtrd | |- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` y ) = G ) |
| 35 | simplr | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> m = F ) |
|
| 36 | simpr | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> n = G ) |
|
| 37 | 35 36 | oveq12d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( m N n ) = ( F N G ) ) |
| 38 | 22 | ad2antrr | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> x = <. F , X >. ) |
| 39 | 38 | fveq2d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` x ) = ( 2nd ` <. F , X >. ) ) |
| 40 | op2ndg | |- ( ( F e. ( C Func D ) /\ X e. B ) -> ( 2nd ` <. F , X >. ) = X ) |
|
| 41 | 8 10 40 | syl2anc | |- ( ph -> ( 2nd ` <. F , X >. ) = X ) |
| 42 | 41 | ad3antrrr | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` <. F , X >. ) = X ) |
| 43 | 39 42 | eqtrd | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` x ) = X ) |
| 44 | 29 | adantr | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> y = <. G , Y >. ) |
| 45 | 44 | fveq2d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` y ) = ( 2nd ` <. G , Y >. ) ) |
| 46 | op2ndg | |- ( ( G e. ( C Func D ) /\ Y e. B ) -> ( 2nd ` <. G , Y >. ) = Y ) |
|
| 47 | 9 11 46 | syl2anc | |- ( ph -> ( 2nd ` <. G , Y >. ) = Y ) |
| 48 | 47 | ad3antrrr | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` <. G , Y >. ) = Y ) |
| 49 | 45 48 | eqtrd | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` y ) = Y ) |
| 50 | 43 49 | oveq12d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 2nd ` x ) H ( 2nd ` y ) ) = ( X H Y ) ) |
| 51 | 35 | fveq2d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 1st ` m ) = ( 1st ` F ) ) |
| 52 | 51 43 | fveq12d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 1st ` m ) ` ( 2nd ` x ) ) = ( ( 1st ` F ) ` X ) ) |
| 53 | 51 49 | fveq12d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 1st ` m ) ` ( 2nd ` y ) ) = ( ( 1st ` F ) ` Y ) ) |
| 54 | 52 53 | opeq12d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. = <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ) |
| 55 | 36 | fveq2d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 1st ` n ) = ( 1st ` G ) ) |
| 56 | 55 49 | fveq12d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 1st ` n ) ` ( 2nd ` y ) ) = ( ( 1st ` G ) ` Y ) ) |
| 57 | 54 56 | oveq12d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) = ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ) |
| 58 | 49 | fveq2d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( a ` ( 2nd ` y ) ) = ( a ` Y ) ) |
| 59 | 35 | fveq2d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` m ) = ( 2nd ` F ) ) |
| 60 | 59 43 49 | oveq123d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) = ( X ( 2nd ` F ) Y ) ) |
| 61 | 60 | fveq1d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) = ( ( X ( 2nd ` F ) Y ) ` g ) ) |
| 62 | 57 58 61 | oveq123d | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) = ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) |
| 63 | 37 50 62 | mpoeq123dv | |- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
| 64 | 28 34 63 | csbied2 | |- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
| 65 | 21 27 64 | csbied2 | |- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
| 66 | 8 10 | opelxpd | |- ( ph -> <. F , X >. e. ( ( C Func D ) X. B ) ) |
| 67 | 9 11 | opelxpd | |- ( ph -> <. G , Y >. e. ( ( C Func D ) X. B ) ) |
| 68 | ovex | |- ( F N G ) e. _V |
|
| 69 | ovex | |- ( X H Y ) e. _V |
|
| 70 | 68 69 | mpoex | |- ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) e. _V |
| 71 | 70 | a1i | |- ( ph -> ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) e. _V ) |
| 72 | 20 65 66 67 71 | ovmpod | |- ( ph -> ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
| 73 | 12 72 | eqtrid | |- ( ph -> L = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |