This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efle | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( exp ` A ) <_ ( exp ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eflt | |- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> ( exp ` B ) < ( exp ` A ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> ( exp ` B ) < ( exp ` A ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. RR /\ B e. RR ) -> ( -. B < A <-> -. ( exp ` B ) < ( exp ` A ) ) ) |
| 4 | lenlt | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
|
| 5 | reefcl | |- ( A e. RR -> ( exp ` A ) e. RR ) |
|
| 6 | reefcl | |- ( B e. RR -> ( exp ` B ) e. RR ) |
|
| 7 | lenlt | |- ( ( ( exp ` A ) e. RR /\ ( exp ` B ) e. RR ) -> ( ( exp ` A ) <_ ( exp ` B ) <-> -. ( exp ` B ) < ( exp ` A ) ) ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` A ) <_ ( exp ` B ) <-> -. ( exp ` B ) < ( exp ` A ) ) ) |
| 9 | 3 4 8 | 3bitr4d | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( exp ` A ) <_ ( exp ` B ) ) ) |