This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eflegeo.1 | |- ( ph -> A e. RR ) |
|
| eflegeo.2 | |- ( ph -> 0 <_ A ) |
||
| eflegeo.3 | |- ( ph -> A < 1 ) |
||
| Assertion | eflegeo | |- ( ph -> ( exp ` A ) <_ ( 1 / ( 1 - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eflegeo.1 | |- ( ph -> A e. RR ) |
|
| 2 | eflegeo.2 | |- ( ph -> 0 <_ A ) |
|
| 3 | eflegeo.3 | |- ( ph -> A < 1 ) |
|
| 4 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 5 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 6 | eqid | |- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 7 | 6 | eftval | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 8 | 7 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 9 | reeftcl | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
|
| 10 | 1 9 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
| 11 | oveq2 | |- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
|
| 12 | eqid | |- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
|
| 13 | ovex | |- ( A ^ k ) e. _V |
|
| 14 | 11 12 13 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 15 | 14 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 16 | reexpcl | |- ( ( A e. RR /\ k e. NN0 ) -> ( A ^ k ) e. RR ) |
|
| 17 | 1 16 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) e. RR ) |
| 18 | faccl | |- ( k e. NN0 -> ( ! ` k ) e. NN ) |
|
| 19 | 18 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
| 20 | 19 | nnred | |- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. RR ) |
| 21 | 1 | adantr | |- ( ( ph /\ k e. NN0 ) -> A e. RR ) |
| 22 | simpr | |- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
|
| 23 | 2 | adantr | |- ( ( ph /\ k e. NN0 ) -> 0 <_ A ) |
| 24 | 21 22 23 | expge0d | |- ( ( ph /\ k e. NN0 ) -> 0 <_ ( A ^ k ) ) |
| 25 | 19 | nnge1d | |- ( ( ph /\ k e. NN0 ) -> 1 <_ ( ! ` k ) ) |
| 26 | 17 20 24 25 | lemulge12d | |- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) <_ ( ( ! ` k ) x. ( A ^ k ) ) ) |
| 27 | 19 | nngt0d | |- ( ( ph /\ k e. NN0 ) -> 0 < ( ! ` k ) ) |
| 28 | ledivmul | |- ( ( ( A ^ k ) e. RR /\ ( A ^ k ) e. RR /\ ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) ) -> ( ( ( A ^ k ) / ( ! ` k ) ) <_ ( A ^ k ) <-> ( A ^ k ) <_ ( ( ! ` k ) x. ( A ^ k ) ) ) ) |
|
| 29 | 17 17 20 27 28 | syl112anc | |- ( ( ph /\ k e. NN0 ) -> ( ( ( A ^ k ) / ( ! ` k ) ) <_ ( A ^ k ) <-> ( A ^ k ) <_ ( ( ! ` k ) x. ( A ^ k ) ) ) ) |
| 30 | 26 29 | mpbird | |- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) <_ ( A ^ k ) ) |
| 31 | 1 | recnd | |- ( ph -> A e. CC ) |
| 32 | 6 | efcllem | |- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
| 33 | 31 32 | syl | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
| 34 | 1 2 | absidd | |- ( ph -> ( abs ` A ) = A ) |
| 35 | 34 3 | eqbrtrd | |- ( ph -> ( abs ` A ) < 1 ) |
| 36 | 31 35 15 | geolim | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) ) |
| 37 | seqex | |- seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. _V |
|
| 38 | ovex | |- ( 1 / ( 1 - A ) ) e. _V |
|
| 39 | 37 38 | breldm | |- ( seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
| 40 | 36 39 | syl | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
| 41 | 4 5 8 10 15 17 30 33 40 | isumle | |- ( ph -> sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) <_ sum_ k e. NN0 ( A ^ k ) ) |
| 42 | efval | |- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
|
| 43 | 31 42 | syl | |- ( ph -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
| 44 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 45 | 31 44 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 46 | 4 5 15 45 36 | isumclim | |- ( ph -> sum_ k e. NN0 ( A ^ k ) = ( 1 / ( 1 - A ) ) ) |
| 47 | 46 | eqcomd | |- ( ph -> ( 1 / ( 1 - A ) ) = sum_ k e. NN0 ( A ^ k ) ) |
| 48 | 41 43 47 | 3brtr4d | |- ( ph -> ( exp ` A ) <_ ( 1 / ( 1 - A ) ) ) |