This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . F is increasing, and G is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | ||
| Assertion | emcllem2 | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝐹 ‘ ( 𝑁 + 1 ) ) ≤ ( 𝐹 ‘ 𝑁 ) ∧ ( 𝐺 ‘ 𝑁 ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| 2 | emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | |
| 3 | peano2nn | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 4 | 3 | nnrecred | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 5 | 3 | nnrpd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ+ ) |
| 6 | 5 | relogcld | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 7 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 8 | 7 | relogcld | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ∈ ℝ ) |
| 9 | 6 8 | resubcld | ⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ ( 𝑁 + 1 ) ) − ( log ‘ 𝑁 ) ) ∈ ℝ ) |
| 10 | fzfid | ⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 11 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝑁 ) → 𝑚 ∈ ℕ ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑚 ∈ ℕ ) |
| 13 | 12 | nnrecred | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 14 | 10 13 | fsumrecl | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 15 | 5 | rpreccld | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 𝑁 + 1 ) ) ∈ ℝ+ ) |
| 16 | 15 | rpge0d | ⊢ ( 𝑁 ∈ ℕ → 0 ≤ ( 1 / ( 𝑁 + 1 ) ) ) |
| 17 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 18 | 1re | ⊢ 1 ∈ ℝ | |
| 19 | ltaddrp | ⊢ ( ( 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → 1 < ( 1 + 𝑁 ) ) | |
| 20 | 18 7 19 | sylancr | ⊢ ( 𝑁 ∈ ℕ → 1 < ( 1 + 𝑁 ) ) |
| 21 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 22 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 23 | addcom | ⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 1 + 𝑁 ) = ( 𝑁 + 1 ) ) | |
| 24 | 21 22 23 | sylancr | ⊢ ( 𝑁 ∈ ℕ → ( 1 + 𝑁 ) = ( 𝑁 + 1 ) ) |
| 25 | 20 24 | breqtrd | ⊢ ( 𝑁 ∈ ℕ → 1 < ( 𝑁 + 1 ) ) |
| 26 | 17 25 | eqbrtrid | ⊢ ( 𝑁 ∈ ℕ → ( 1 / 1 ) < ( 𝑁 + 1 ) ) |
| 27 | 3 | nnred | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
| 28 | 3 | nngt0d | ⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
| 29 | 0lt1 | ⊢ 0 < 1 | |
| 30 | ltrec1 | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( ( 𝑁 + 1 ) ∈ ℝ ∧ 0 < ( 𝑁 + 1 ) ) ) → ( ( 1 / 1 ) < ( 𝑁 + 1 ) ↔ ( 1 / ( 𝑁 + 1 ) ) < 1 ) ) | |
| 31 | 18 29 30 | mpanl12 | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℝ ∧ 0 < ( 𝑁 + 1 ) ) → ( ( 1 / 1 ) < ( 𝑁 + 1 ) ↔ ( 1 / ( 𝑁 + 1 ) ) < 1 ) ) |
| 32 | 27 28 31 | syl2anc | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 1 ) < ( 𝑁 + 1 ) ↔ ( 1 / ( 𝑁 + 1 ) ) < 1 ) ) |
| 33 | 26 32 | mpbid | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 𝑁 + 1 ) ) < 1 ) |
| 34 | 4 16 33 | eflegeo | ⊢ ( 𝑁 ∈ ℕ → ( exp ‘ ( 1 / ( 𝑁 + 1 ) ) ) ≤ ( 1 / ( 1 − ( 1 / ( 𝑁 + 1 ) ) ) ) ) |
| 35 | 27 | recnd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℂ ) |
| 36 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 37 | 3 | nnne0d | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ≠ 0 ) |
| 38 | 22 35 36 37 | recdivd | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 𝑁 / ( 𝑁 + 1 ) ) ) = ( ( 𝑁 + 1 ) / 𝑁 ) ) |
| 39 | 1cnd | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) | |
| 40 | 35 39 35 37 | divsubdird | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) − 1 ) / ( 𝑁 + 1 ) ) = ( ( ( 𝑁 + 1 ) / ( 𝑁 + 1 ) ) − ( 1 / ( 𝑁 + 1 ) ) ) ) |
| 41 | pncan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 42 | 22 21 41 | sylancl | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 43 | 42 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) − 1 ) / ( 𝑁 + 1 ) ) = ( 𝑁 / ( 𝑁 + 1 ) ) ) |
| 44 | 35 37 | dividd | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / ( 𝑁 + 1 ) ) = 1 ) |
| 45 | 44 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / ( 𝑁 + 1 ) ) − ( 1 / ( 𝑁 + 1 ) ) ) = ( 1 − ( 1 / ( 𝑁 + 1 ) ) ) ) |
| 46 | 40 43 45 | 3eqtr3rd | ⊢ ( 𝑁 ∈ ℕ → ( 1 − ( 1 / ( 𝑁 + 1 ) ) ) = ( 𝑁 / ( 𝑁 + 1 ) ) ) |
| 47 | 46 | oveq2d | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 1 − ( 1 / ( 𝑁 + 1 ) ) ) ) = ( 1 / ( 𝑁 / ( 𝑁 + 1 ) ) ) ) |
| 48 | 5 7 | rpdivcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / 𝑁 ) ∈ ℝ+ ) |
| 49 | 48 | reeflogd | ⊢ ( 𝑁 ∈ ℕ → ( exp ‘ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) = ( ( 𝑁 + 1 ) / 𝑁 ) ) |
| 50 | 38 47 49 | 3eqtr4d | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 1 − ( 1 / ( 𝑁 + 1 ) ) ) ) = ( exp ‘ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 51 | 34 50 | breqtrd | ⊢ ( 𝑁 ∈ ℕ → ( exp ‘ ( 1 / ( 𝑁 + 1 ) ) ) ≤ ( exp ‘ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 52 | 5 7 | relogdivd | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) = ( ( log ‘ ( 𝑁 + 1 ) ) − ( log ‘ 𝑁 ) ) ) |
| 53 | 52 9 | eqeltrd | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ∈ ℝ ) |
| 54 | efle | ⊢ ( ( ( 1 / ( 𝑁 + 1 ) ) ∈ ℝ ∧ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ∈ ℝ ) → ( ( 1 / ( 𝑁 + 1 ) ) ≤ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ↔ ( exp ‘ ( 1 / ( 𝑁 + 1 ) ) ) ≤ ( exp ‘ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) ) | |
| 55 | 4 53 54 | syl2anc | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( 𝑁 + 1 ) ) ≤ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ↔ ( exp ‘ ( 1 / ( 𝑁 + 1 ) ) ) ≤ ( exp ‘ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) ) |
| 56 | 51 55 | mpbird | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 𝑁 + 1 ) ) ≤ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) |
| 57 | 56 52 | breqtrd | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 𝑁 + 1 ) ) ≤ ( ( log ‘ ( 𝑁 + 1 ) ) − ( log ‘ 𝑁 ) ) ) |
| 58 | 4 9 14 57 | leadd2dd | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) + ( 1 / ( 𝑁 + 1 ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) + ( ( log ‘ ( 𝑁 + 1 ) ) − ( log ‘ 𝑁 ) ) ) ) |
| 59 | id | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) | |
| 60 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 61 | 59 60 | eleqtrdi | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 62 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) → 𝑚 ∈ ℕ ) | |
| 63 | 62 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ℕ ) |
| 64 | 63 | nnrecred | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 65 | 64 | recnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 66 | oveq2 | ⊢ ( 𝑚 = ( 𝑁 + 1 ) → ( 1 / 𝑚 ) = ( 1 / ( 𝑁 + 1 ) ) ) | |
| 67 | 61 65 66 | fsump1 | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) + ( 1 / ( 𝑁 + 1 ) ) ) ) |
| 68 | 6 | recnd | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 69 | 14 | recnd | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) ∈ ℂ ) |
| 70 | 8 | recnd | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ∈ ℂ ) |
| 71 | 68 69 70 | addsub12d | ⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ ( 𝑁 + 1 ) ) + ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) + ( ( log ‘ ( 𝑁 + 1 ) ) − ( log ‘ 𝑁 ) ) ) ) |
| 72 | 58 67 71 | 3brtr4d | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) ≤ ( ( log ‘ ( 𝑁 + 1 ) ) + ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ) ) |
| 73 | fzfid | ⊢ ( 𝑁 ∈ ℕ → ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ) | |
| 74 | 73 64 | fsumrecl | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 75 | 14 8 | resubcld | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ∈ ℝ ) |
| 76 | 74 6 75 | lesubadd2d | ⊢ ( 𝑁 ∈ ℕ → ( ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ↔ Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) ≤ ( ( log ‘ ( 𝑁 + 1 ) ) + ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ) ) ) |
| 77 | 72 76 | mpbird | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ) |
| 78 | oveq2 | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( 1 ... 𝑛 ) = ( 1 ... ( 𝑁 + 1 ) ) ) | |
| 79 | 78 | sumeq1d | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) ) |
| 80 | fveq2 | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( log ‘ 𝑛 ) = ( log ‘ ( 𝑁 + 1 ) ) ) | |
| 81 | 79 80 | oveq12d | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) |
| 82 | ovex | ⊢ ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ V | |
| 83 | 81 1 82 | fvmpt | ⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( 𝐹 ‘ ( 𝑁 + 1 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) |
| 84 | 3 83 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ ( 𝑁 + 1 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) |
| 85 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) | |
| 86 | 85 | sumeq1d | ⊢ ( 𝑛 = 𝑁 → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) ) |
| 87 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( log ‘ 𝑛 ) = ( log ‘ 𝑁 ) ) | |
| 88 | 86 87 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ) |
| 89 | ovex | ⊢ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ∈ V | |
| 90 | 88 1 89 | fvmpt | ⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ) |
| 91 | 77 84 90 | 3brtr4d | ⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ ( 𝑁 + 1 ) ) ≤ ( 𝐹 ‘ 𝑁 ) ) |
| 92 | peano2nn | ⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( ( 𝑁 + 1 ) + 1 ) ∈ ℕ ) | |
| 93 | 3 92 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) + 1 ) ∈ ℕ ) |
| 94 | 93 | nnrpd | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) + 1 ) ∈ ℝ+ ) |
| 95 | 94 | relogcld | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ∈ ℝ ) |
| 96 | 95 6 | resubcld | ⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ℝ ) |
| 97 | logdifbnd | ⊢ ( ( 𝑁 + 1 ) ∈ ℝ+ → ( ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) − ( log ‘ ( 𝑁 + 1 ) ) ) ≤ ( 1 / ( 𝑁 + 1 ) ) ) | |
| 98 | 5 97 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) − ( log ‘ ( 𝑁 + 1 ) ) ) ≤ ( 1 / ( 𝑁 + 1 ) ) ) |
| 99 | 96 4 14 98 | leadd2dd | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) + ( ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) + ( 1 / ( 𝑁 + 1 ) ) ) ) |
| 100 | 95 | recnd | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ∈ ℂ ) |
| 101 | 69 68 100 | subadd23d | ⊢ ( 𝑁 ∈ ℕ → ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) + ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) + ( ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 102 | 99 101 67 | 3brtr4d | ⊢ ( 𝑁 ∈ ℕ → ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) + ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) ≤ Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) ) |
| 103 | 14 6 | resubcld | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ℝ ) |
| 104 | leaddsub | ⊢ ( ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ℝ ∧ ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ∈ ℝ ∧ Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) ∈ ℝ ) → ( ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) + ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) ≤ Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) ↔ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) ) ) | |
| 105 | 103 95 74 104 | syl3anc | ⊢ ( 𝑁 ∈ ℕ → ( ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) + ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) ≤ Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) ↔ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) ) ) |
| 106 | 102 105 | mpbid | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) ) |
| 107 | fvoveq1 | ⊢ ( 𝑛 = 𝑁 → ( log ‘ ( 𝑛 + 1 ) ) = ( log ‘ ( 𝑁 + 1 ) ) ) | |
| 108 | 86 107 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) |
| 109 | ovex | ⊢ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ V | |
| 110 | 108 2 109 | fvmpt | ⊢ ( 𝑁 ∈ ℕ → ( 𝐺 ‘ 𝑁 ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) |
| 111 | fvoveq1 | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( log ‘ ( 𝑛 + 1 ) ) = ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) | |
| 112 | 79 111 | oveq12d | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) ) |
| 113 | ovex | ⊢ ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) ∈ V | |
| 114 | 112 2 113 | fvmpt | ⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) ) |
| 115 | 3 114 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( 𝑁 + 1 ) + 1 ) ) ) ) |
| 116 | 106 110 115 | 3brtr4d | ⊢ ( 𝑁 ∈ ℕ → ( 𝐺 ‘ 𝑁 ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
| 117 | 91 116 | jca | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝐹 ‘ ( 𝑁 + 1 ) ) ≤ ( 𝐹 ‘ 𝑁 ) ∧ ( 𝐺 ‘ 𝑁 ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |