This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdifbnd | |- ( A e. RR+ -> ( ( log ` ( A + 1 ) ) - ( log ` A ) ) <_ ( 1 / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 2 | 1cnd | |- ( A e. RR+ -> 1 e. CC ) |
|
| 3 | rpne0 | |- ( A e. RR+ -> A =/= 0 ) |
|
| 4 | 1 2 1 3 | divdird | |- ( A e. RR+ -> ( ( A + 1 ) / A ) = ( ( A / A ) + ( 1 / A ) ) ) |
| 5 | 1 3 | dividd | |- ( A e. RR+ -> ( A / A ) = 1 ) |
| 6 | 5 | oveq1d | |- ( A e. RR+ -> ( ( A / A ) + ( 1 / A ) ) = ( 1 + ( 1 / A ) ) ) |
| 7 | 4 6 | eqtr2d | |- ( A e. RR+ -> ( 1 + ( 1 / A ) ) = ( ( A + 1 ) / A ) ) |
| 8 | 7 | fveq2d | |- ( A e. RR+ -> ( log ` ( 1 + ( 1 / A ) ) ) = ( log ` ( ( A + 1 ) / A ) ) ) |
| 9 | 1rp | |- 1 e. RR+ |
|
| 10 | rpaddcl | |- ( ( A e. RR+ /\ 1 e. RR+ ) -> ( A + 1 ) e. RR+ ) |
|
| 11 | 9 10 | mpan2 | |- ( A e. RR+ -> ( A + 1 ) e. RR+ ) |
| 12 | relogdiv | |- ( ( ( A + 1 ) e. RR+ /\ A e. RR+ ) -> ( log ` ( ( A + 1 ) / A ) ) = ( ( log ` ( A + 1 ) ) - ( log ` A ) ) ) |
|
| 13 | 11 12 | mpancom | |- ( A e. RR+ -> ( log ` ( ( A + 1 ) / A ) ) = ( ( log ` ( A + 1 ) ) - ( log ` A ) ) ) |
| 14 | 8 13 | eqtrd | |- ( A e. RR+ -> ( log ` ( 1 + ( 1 / A ) ) ) = ( ( log ` ( A + 1 ) ) - ( log ` A ) ) ) |
| 15 | rpreccl | |- ( A e. RR+ -> ( 1 / A ) e. RR+ ) |
|
| 16 | rpaddcl | |- ( ( 1 e. RR+ /\ ( 1 / A ) e. RR+ ) -> ( 1 + ( 1 / A ) ) e. RR+ ) |
|
| 17 | 9 15 16 | sylancr | |- ( A e. RR+ -> ( 1 + ( 1 / A ) ) e. RR+ ) |
| 18 | 17 | reeflogd | |- ( A e. RR+ -> ( exp ` ( log ` ( 1 + ( 1 / A ) ) ) ) = ( 1 + ( 1 / A ) ) ) |
| 19 | 17 | rpred | |- ( A e. RR+ -> ( 1 + ( 1 / A ) ) e. RR ) |
| 20 | 15 | rpred | |- ( A e. RR+ -> ( 1 / A ) e. RR ) |
| 21 | 20 | reefcld | |- ( A e. RR+ -> ( exp ` ( 1 / A ) ) e. RR ) |
| 22 | efgt1p | |- ( ( 1 / A ) e. RR+ -> ( 1 + ( 1 / A ) ) < ( exp ` ( 1 / A ) ) ) |
|
| 23 | 15 22 | syl | |- ( A e. RR+ -> ( 1 + ( 1 / A ) ) < ( exp ` ( 1 / A ) ) ) |
| 24 | 19 21 23 | ltled | |- ( A e. RR+ -> ( 1 + ( 1 / A ) ) <_ ( exp ` ( 1 / A ) ) ) |
| 25 | 18 24 | eqbrtrd | |- ( A e. RR+ -> ( exp ` ( log ` ( 1 + ( 1 / A ) ) ) ) <_ ( exp ` ( 1 / A ) ) ) |
| 26 | relogcl | |- ( ( A + 1 ) e. RR+ -> ( log ` ( A + 1 ) ) e. RR ) |
|
| 27 | 11 26 | syl | |- ( A e. RR+ -> ( log ` ( A + 1 ) ) e. RR ) |
| 28 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 29 | 27 28 | resubcld | |- ( A e. RR+ -> ( ( log ` ( A + 1 ) ) - ( log ` A ) ) e. RR ) |
| 30 | 14 29 | eqeltrd | |- ( A e. RR+ -> ( log ` ( 1 + ( 1 / A ) ) ) e. RR ) |
| 31 | efle | |- ( ( ( log ` ( 1 + ( 1 / A ) ) ) e. RR /\ ( 1 / A ) e. RR ) -> ( ( log ` ( 1 + ( 1 / A ) ) ) <_ ( 1 / A ) <-> ( exp ` ( log ` ( 1 + ( 1 / A ) ) ) ) <_ ( exp ` ( 1 / A ) ) ) ) |
|
| 32 | 30 20 31 | syl2anc | |- ( A e. RR+ -> ( ( log ` ( 1 + ( 1 / A ) ) ) <_ ( 1 / A ) <-> ( exp ` ( log ` ( 1 + ( 1 / A ) ) ) ) <_ ( exp ` ( 1 / A ) ) ) ) |
| 33 | 25 32 | mpbird | |- ( A e. RR+ -> ( log ` ( 1 + ( 1 / A ) ) ) <_ ( 1 / A ) ) |
| 34 | 14 33 | eqbrtrrd | |- ( A e. RR+ -> ( ( log ` ( A + 1 ) ) - ( log ` A ) ) <_ ( 1 / A ) ) |