This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition of the next term in a finite sum of A ( k ) is the current term plus B i.e. A ( N + 1 ) . (Contributed by NM, 4-Nov-2005) (Revised by Mario Carneiro, 21-Apr-2014) (Proof shortened by SN, 22-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsump1.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| fsump1.2 | |- ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. CC ) |
||
| fsump1.3 | |- ( k = ( N + 1 ) -> A = B ) |
||
| Assertion | fsump1 | |- ( ph -> sum_ k e. ( M ... ( N + 1 ) ) A = ( sum_ k e. ( M ... N ) A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsump1.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | fsump1.2 | |- ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. CC ) |
|
| 3 | fsump1.3 | |- ( k = ( N + 1 ) -> A = B ) |
|
| 4 | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 5 | 1 4 | syl | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 6 | 5 2 3 | fsumm1 | |- ( ph -> sum_ k e. ( M ... ( N + 1 ) ) A = ( sum_ k e. ( M ... ( ( N + 1 ) - 1 ) ) A + B ) ) |
| 7 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 8 | 1 7 | syl | |- ( ph -> N e. ZZ ) |
| 9 | 8 | zcnd | |- ( ph -> N e. CC ) |
| 10 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 11 | 9 10 | pncand | |- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 12 | 11 | oveq2d | |- ( ph -> ( M ... ( ( N + 1 ) - 1 ) ) = ( M ... N ) ) |
| 13 | 12 | sumeq1d | |- ( ph -> sum_ k e. ( M ... ( ( N + 1 ) - 1 ) ) A = sum_ k e. ( M ... N ) A ) |
| 14 | 13 | oveq1d | |- ( ph -> ( sum_ k e. ( M ... ( ( N + 1 ) - 1 ) ) A + B ) = ( sum_ k e. ( M ... N ) A + B ) ) |
| 15 | 6 14 | eqtrd | |- ( ph -> sum_ k e. ( M ... ( N + 1 ) ) A = ( sum_ k e. ( M ... N ) A + B ) ) |