This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015) (Proof shortened by AV, 3-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
||
| efgredlem.2 | |- ( ph -> A e. dom S ) |
||
| efgredlem.3 | |- ( ph -> B e. dom S ) |
||
| efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
||
| efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
||
| Assertion | efgredlem | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
|
| 8 | efgredlem.2 | |- ( ph -> A e. dom S ) |
|
| 9 | efgredlem.3 | |- ( ph -> B e. dom S ) |
|
| 10 | efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
|
| 11 | efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
|
| 12 | fviss | |- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
|
| 13 | 1 12 | eqsstri | |- W C_ Word ( I X. 2o ) |
| 14 | 1 2 3 4 5 6 | efgsdm | |- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) |
| 15 | 14 | simp1bi | |- ( A e. dom S -> A e. ( Word W \ { (/) } ) ) |
| 16 | 8 15 | syl | |- ( ph -> A e. ( Word W \ { (/) } ) ) |
| 17 | 16 | eldifad | |- ( ph -> A e. Word W ) |
| 18 | wrdf | |- ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
|
| 19 | 17 18 | syl | |- ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
| 20 | 1 2 3 4 5 6 7 8 9 10 11 | efgredlema | |- ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |
| 21 | 20 | simpld | |- ( ph -> ( ( # ` A ) - 1 ) e. NN ) |
| 22 | nnm1nn0 | |- ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 ) |
|
| 23 | 21 22 | syl | |- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 ) |
| 24 | 21 | nnred | |- ( ph -> ( ( # ` A ) - 1 ) e. RR ) |
| 25 | 24 | lem1d | |- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) <_ ( ( # ` A ) - 1 ) ) |
| 26 | eldifsni | |- ( A e. ( Word W \ { (/) } ) -> A =/= (/) ) |
|
| 27 | 8 15 26 | 3syl | |- ( ph -> A =/= (/) ) |
| 28 | wrdfin | |- ( A e. Word W -> A e. Fin ) |
|
| 29 | hashnncl | |- ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
|
| 30 | 17 28 29 | 3syl | |- ( ph -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
| 31 | 27 30 | mpbird | |- ( ph -> ( # ` A ) e. NN ) |
| 32 | nnm1nn0 | |- ( ( # ` A ) e. NN -> ( ( # ` A ) - 1 ) e. NN0 ) |
|
| 33 | fznn0 | |- ( ( ( # ` A ) - 1 ) e. NN0 -> ( ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` A ) - 1 ) ) <-> ( ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 /\ ( ( ( # ` A ) - 1 ) - 1 ) <_ ( ( # ` A ) - 1 ) ) ) ) |
|
| 34 | 31 32 33 | 3syl | |- ( ph -> ( ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` A ) - 1 ) ) <-> ( ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 /\ ( ( ( # ` A ) - 1 ) - 1 ) <_ ( ( # ` A ) - 1 ) ) ) ) |
| 35 | 23 25 34 | mpbir2and | |- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 36 | lencl | |- ( A e. Word W -> ( # ` A ) e. NN0 ) |
|
| 37 | 17 36 | syl | |- ( ph -> ( # ` A ) e. NN0 ) |
| 38 | 37 | nn0zd | |- ( ph -> ( # ` A ) e. ZZ ) |
| 39 | fzoval | |- ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
|
| 40 | 38 39 | syl | |- ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 41 | 35 40 | eleqtrrd | |- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( # ` A ) ) ) |
| 42 | 19 41 | ffvelcdmd | |- ( ph -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. W ) |
| 43 | 13 42 | sselid | |- ( ph -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. Word ( I X. 2o ) ) |
| 44 | lencl | |- ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. Word ( I X. 2o ) -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. NN0 ) |
|
| 45 | 43 44 | syl | |- ( ph -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. NN0 ) |
| 46 | 45 | nn0red | |- ( ph -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. RR ) |
| 47 | 2rp | |- 2 e. RR+ |
|
| 48 | ltaddrp | |- ( ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. RR /\ 2 e. RR+ ) -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) < ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) |
|
| 49 | 46 47 48 | sylancl | |- ( ph -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) < ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) |
| 50 | 37 | nn0red | |- ( ph -> ( # ` A ) e. RR ) |
| 51 | 50 | lem1d | |- ( ph -> ( ( # ` A ) - 1 ) <_ ( # ` A ) ) |
| 52 | fznn | |- ( ( # ` A ) e. ZZ -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) |
|
| 53 | 38 52 | syl | |- ( ph -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) |
| 54 | 21 51 53 | mpbir2and | |- ( ph -> ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) |
| 55 | 1 2 3 4 5 6 | efgsres | |- ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) |
| 56 | 8 54 55 | syl2anc | |- ( ph -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) |
| 57 | 1 2 3 4 5 6 | efgsval | |- ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) |
| 58 | 56 57 | syl | |- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) |
| 59 | fz1ssfz0 | |- ( 1 ... ( # ` A ) ) C_ ( 0 ... ( # ` A ) ) |
|
| 60 | 59 54 | sselid | |- ( ph -> ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) |
| 61 | pfxres | |- ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) |
|
| 62 | 17 60 61 | syl2anc | |- ( ph -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) |
| 63 | 62 | fveq2d | |- ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) |
| 64 | pfxlen | |- ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) |
|
| 65 | 17 60 64 | syl2anc | |- ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) |
| 66 | 63 65 | eqtr3d | |- ( ph -> ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( # ` A ) - 1 ) ) |
| 67 | 66 | fvoveq1d | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
| 68 | fzo0end | |- ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
|
| 69 | fvres | |- ( ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
|
| 70 | 21 68 69 | 3syl | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
| 71 | 58 67 70 | 3eqtrd | |- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
| 72 | 71 | fveq2d | |- ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) = ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) |
| 73 | 1 2 3 4 5 6 | efgsdmi | |- ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. NN ) -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) |
| 74 | 8 21 73 | syl2anc | |- ( ph -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) |
| 75 | 1 2 3 4 | efgtlen | |- ( ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. W /\ ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) |
| 76 | 42 74 75 | syl2anc | |- ( ph -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) |
| 77 | 49 72 76 | 3brtr4d | |- ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) |
| 78 | 1 2 3 4 | efgtf | |- ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. W -> ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 79 | 42 78 | syl | |- ( ph -> ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 80 | 79 | simprd | |- ( ph -> ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) |
| 81 | ffn | |- ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W -> ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) ) |
|
| 82 | ovelrn | |- ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) -> ( ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) <-> E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) ) |
|
| 83 | 80 81 82 | 3syl | |- ( ph -> ( ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) <-> E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) ) |
| 84 | 74 83 | mpbid | |- ( ph -> E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) |
| 85 | 20 | simprd | |- ( ph -> ( ( # ` B ) - 1 ) e. NN ) |
| 86 | 1 2 3 4 5 6 | efgsdmi | |- ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. NN ) -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 87 | 9 85 86 | syl2anc | |- ( ph -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 88 | 1 2 3 4 5 6 | efgsdm | |- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) |
| 89 | 88 | simp1bi | |- ( B e. dom S -> B e. ( Word W \ { (/) } ) ) |
| 90 | 9 89 | syl | |- ( ph -> B e. ( Word W \ { (/) } ) ) |
| 91 | 90 | eldifad | |- ( ph -> B e. Word W ) |
| 92 | wrdf | |- ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
|
| 93 | 91 92 | syl | |- ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
| 94 | fzo0end | |- ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
|
| 95 | elfzofz | |- ( ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` B ) - 1 ) ) ) |
|
| 96 | 85 94 95 | 3syl | |- ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 97 | lencl | |- ( B e. Word W -> ( # ` B ) e. NN0 ) |
|
| 98 | 91 97 | syl | |- ( ph -> ( # ` B ) e. NN0 ) |
| 99 | 98 | nn0zd | |- ( ph -> ( # ` B ) e. ZZ ) |
| 100 | fzoval | |- ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
|
| 101 | 99 100 | syl | |- ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 102 | 96 101 | eleqtrrd | |- ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( # ` B ) ) ) |
| 103 | 93 102 | ffvelcdmd | |- ( ph -> ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) e. W ) |
| 104 | 1 2 3 4 | efgtf | |- ( ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) e. W -> ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 105 | 103 104 | syl | |- ( ph -> ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 106 | 105 | simprd | |- ( ph -> ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) |
| 107 | ffn | |- ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W -> ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) ) |
|
| 108 | ovelrn | |- ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) -> ( ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) <-> E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) |
|
| 109 | 106 107 108 | 3syl | |- ( ph -> ( ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) <-> E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) |
| 110 | 87 109 | mpbid | |- ( ph -> E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) |
| 111 | reeanv | |- ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) <-> ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) |
|
| 112 | reeanv | |- ( E. r e. ( I X. 2o ) E. s e. ( I X. 2o ) ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) <-> ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) |
|
| 113 | 7 | ad3antrrr | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 114 | 8 | ad3antrrr | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> A e. dom S ) |
| 115 | 9 | ad3antrrr | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> B e. dom S ) |
| 116 | 10 | ad3antrrr | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( S ` A ) = ( S ` B ) ) |
| 117 | 11 | ad3antrrr | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> -. ( A ` 0 ) = ( B ` 0 ) ) |
| 118 | eqid | |- ( ( ( # ` A ) - 1 ) - 1 ) = ( ( ( # ` A ) - 1 ) - 1 ) |
|
| 119 | eqid | |- ( ( ( # ` B ) - 1 ) - 1 ) = ( ( ( # ` B ) - 1 ) - 1 ) |
|
| 120 | simpllr | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) |
|
| 121 | 120 | simpld | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) ) |
| 122 | 120 | simprd | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) |
| 123 | simplrl | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) ) |
|
| 124 | 123 | simpld | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> r e. ( I X. 2o ) ) |
| 125 | 123 | simprd | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> s e. ( I X. 2o ) ) |
| 126 | simplrr | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) |
|
| 127 | 126 | simpld | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) |
| 128 | 126 | simprd | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) |
| 129 | simpr | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
|
| 130 | 1 2 3 4 5 6 113 114 115 116 117 118 119 121 122 124 125 127 128 129 | efgredlemb | |- -. ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
| 131 | iman | |- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) <-> -. ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
|
| 132 | 130 131 | mpbir | |- ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
| 133 | 132 | expr | |- ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) ) -> ( ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 134 | 133 | rexlimdvva | |- ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) -> ( E. r e. ( I X. 2o ) E. s e. ( I X. 2o ) ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 135 | 112 134 | biimtrrid | |- ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) -> ( ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 136 | 135 | rexlimdvva | |- ( ph -> ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 137 | 111 136 | biimtrrid | |- ( ph -> ( ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 138 | 84 110 137 | mp2and | |- ( ph -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
| 139 | fvres | |- ( ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
|
| 140 | 85 94 139 | 3syl | |- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
| 141 | 138 70 140 | 3eqtr4d | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
| 142 | fz1ssfz0 | |- ( 1 ... ( # ` B ) ) C_ ( 0 ... ( # ` B ) ) |
|
| 143 | 98 | nn0red | |- ( ph -> ( # ` B ) e. RR ) |
| 144 | 143 | lem1d | |- ( ph -> ( ( # ` B ) - 1 ) <_ ( # ` B ) ) |
| 145 | fznn | |- ( ( # ` B ) e. ZZ -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) |
|
| 146 | 99 145 | syl | |- ( ph -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) |
| 147 | 85 144 146 | mpbir2and | |- ( ph -> ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) |
| 148 | 142 147 | sselid | |- ( ph -> ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) |
| 149 | pfxres | |- ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) |
|
| 150 | 91 148 149 | syl2anc | |- ( ph -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) |
| 151 | 150 | fveq2d | |- ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) |
| 152 | pfxlen | |- ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) |
|
| 153 | 91 148 152 | syl2anc | |- ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) |
| 154 | 151 153 | eqtr3d | |- ( ph -> ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( # ` B ) - 1 ) ) |
| 155 | 154 | fvoveq1d | |- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
| 156 | 141 67 155 | 3eqtr4d | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) |
| 157 | 1 2 3 4 5 6 | efgsres | |- ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) |
| 158 | 9 147 157 | syl2anc | |- ( ph -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) |
| 159 | 1 2 3 4 5 6 | efgsval | |- ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) |
| 160 | 158 159 | syl | |- ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) |
| 161 | 156 58 160 | 3eqtr4d | |- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) |
| 162 | fveq2 | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( S ` a ) = ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) |
|
| 163 | 162 | fveq2d | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( # ` ( S ` a ) ) = ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) ) |
| 164 | 163 | breq1d | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) ) |
| 165 | 162 | eqeq1d | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( S ` a ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) ) ) |
| 166 | fveq1 | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( a ` 0 ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) ) |
|
| 167 | 166 | eqeq1d | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) |
| 168 | 165 167 | imbi12d | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) |
| 169 | 164 168 | imbi12d | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 170 | fveq2 | |- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( S ` b ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) |
|
| 171 | 170 | eqeq2d | |- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) ) |
| 172 | fveq1 | |- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( b ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) |
|
| 173 | 172 | eqeq2d | |- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) |
| 174 | 171 173 | imbi12d | |- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) |
| 175 | 174 | imbi2d | |- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) ) |
| 176 | 169 175 | rspc2va | |- ( ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S /\ ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) |
| 177 | 56 158 7 176 | syl21anc | |- ( ph -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) |
| 178 | 77 161 177 | mp2d | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) |
| 179 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) <-> ( ( # ` A ) - 1 ) e. NN ) |
|
| 180 | 21 179 | sylibr | |- ( ph -> 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 181 | 180 | fvresd | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( A ` 0 ) ) |
| 182 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) <-> ( ( # ` B ) - 1 ) e. NN ) |
|
| 183 | 85 182 | sylibr | |- ( ph -> 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 184 | 183 | fvresd | |- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( B ` 0 ) ) |
| 185 | 178 181 184 | 3eqtr3d | |- ( ph -> ( A ` 0 ) = ( B ` 0 ) ) |
| 186 | 185 11 | pm2.65i | |- -. ph |