This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| Assertion | efgsdmi | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( S ` F ) e. ran ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | 1 2 3 4 5 6 | efgsval | |- ( F e. dom S -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 8 | 7 | adantr | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 9 | fveq2 | |- ( i = ( ( # ` F ) - 1 ) -> ( F ` i ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
|
| 10 | fvoveq1 | |- ( i = ( ( # ` F ) - 1 ) -> ( F ` ( i - 1 ) ) = ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) |
|
| 11 | 10 | fveq2d | |- ( i = ( ( # ` F ) - 1 ) -> ( T ` ( F ` ( i - 1 ) ) ) = ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) |
| 12 | 11 | rneqd | |- ( i = ( ( # ` F ) - 1 ) -> ran ( T ` ( F ` ( i - 1 ) ) ) = ran ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) |
| 13 | 9 12 | eleq12d | |- ( i = ( ( # ` F ) - 1 ) -> ( ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) <-> ( F ` ( ( # ` F ) - 1 ) ) e. ran ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) ) |
| 14 | 1 2 3 4 5 6 | efgsdm | |- ( F e. dom S <-> ( F e. ( Word W \ { (/) } ) /\ ( F ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 15 | 14 | simp3bi | |- ( F e. dom S -> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) |
| 16 | 15 | adantr | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) |
| 17 | simpr | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( ( # ` F ) - 1 ) e. NN ) |
|
| 18 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 19 | 17 18 | eleqtrdi | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( ( # ` F ) - 1 ) e. ( ZZ>= ` 1 ) ) |
| 20 | eluzfz1 | |- ( ( ( # ` F ) - 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( ( # ` F ) - 1 ) ) ) |
|
| 21 | 19 20 | syl | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> 1 e. ( 1 ... ( ( # ` F ) - 1 ) ) ) |
| 22 | 14 | simp1bi | |- ( F e. dom S -> F e. ( Word W \ { (/) } ) ) |
| 23 | 22 | adantr | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> F e. ( Word W \ { (/) } ) ) |
| 24 | 23 | eldifad | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> F e. Word W ) |
| 25 | lencl | |- ( F e. Word W -> ( # ` F ) e. NN0 ) |
|
| 26 | nn0z | |- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) |
|
| 27 | fzoval | |- ( ( # ` F ) e. ZZ -> ( 1 ..^ ( # ` F ) ) = ( 1 ... ( ( # ` F ) - 1 ) ) ) |
|
| 28 | 24 25 26 27 | 4syl | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( 1 ..^ ( # ` F ) ) = ( 1 ... ( ( # ` F ) - 1 ) ) ) |
| 29 | 21 28 | eleqtrrd | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> 1 e. ( 1 ..^ ( # ` F ) ) ) |
| 30 | fzoend | |- ( 1 e. ( 1 ..^ ( # ` F ) ) -> ( ( # ` F ) - 1 ) e. ( 1 ..^ ( # ` F ) ) ) |
|
| 31 | 29 30 | syl | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( ( # ` F ) - 1 ) e. ( 1 ..^ ( # ` F ) ) ) |
| 32 | 13 16 31 | rspcdva | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( F ` ( ( # ` F ) - 1 ) ) e. ran ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) |
| 33 | 8 32 | eqeltrd | |- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( S ` F ) e. ran ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) |