This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| Assertion | efgred | |- ( ( A e. dom S /\ B e. dom S /\ ( S ` A ) = ( S ` B ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | fviss | |- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
|
| 8 | 1 7 | eqsstri | |- W C_ Word ( I X. 2o ) |
| 9 | 1 2 3 4 5 6 | efgsf | |- S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W |
| 10 | 9 | fdmi | |- dom S = { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |
| 11 | 10 | feq2i | |- ( S : dom S --> W <-> S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W ) |
| 12 | 9 11 | mpbir | |- S : dom S --> W |
| 13 | 12 | ffvelcdmi | |- ( A e. dom S -> ( S ` A ) e. W ) |
| 14 | 13 | adantr | |- ( ( A e. dom S /\ B e. dom S ) -> ( S ` A ) e. W ) |
| 15 | 8 14 | sselid | |- ( ( A e. dom S /\ B e. dom S ) -> ( S ` A ) e. Word ( I X. 2o ) ) |
| 16 | lencl | |- ( ( S ` A ) e. Word ( I X. 2o ) -> ( # ` ( S ` A ) ) e. NN0 ) |
|
| 17 | 15 16 | syl | |- ( ( A e. dom S /\ B e. dom S ) -> ( # ` ( S ` A ) ) e. NN0 ) |
| 18 | peano2nn0 | |- ( ( # ` ( S ` A ) ) e. NN0 -> ( ( # ` ( S ` A ) ) + 1 ) e. NN0 ) |
|
| 19 | 17 18 | syl | |- ( ( A e. dom S /\ B e. dom S ) -> ( ( # ` ( S ` A ) ) + 1 ) e. NN0 ) |
| 20 | breq2 | |- ( c = 0 -> ( ( # ` ( S ` a ) ) < c <-> ( # ` ( S ` a ) ) < 0 ) ) |
|
| 21 | 20 | imbi1d | |- ( c = 0 -> ( ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < 0 -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 22 | 21 | 2ralbidv | |- ( c = 0 -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < 0 -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 23 | breq2 | |- ( c = i -> ( ( # ` ( S ` a ) ) < c <-> ( # ` ( S ` a ) ) < i ) ) |
|
| 24 | 23 | imbi1d | |- ( c = i -> ( ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 25 | 24 | 2ralbidv | |- ( c = i -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 26 | breq2 | |- ( c = ( i + 1 ) -> ( ( # ` ( S ` a ) ) < c <-> ( # ` ( S ` a ) ) < ( i + 1 ) ) ) |
|
| 27 | 26 | imbi1d | |- ( c = ( i + 1 ) -> ( ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 28 | 27 | 2ralbidv | |- ( c = ( i + 1 ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 29 | breq2 | |- ( c = ( ( # ` ( S ` A ) ) + 1 ) -> ( ( # ` ( S ` a ) ) < c <-> ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) ) ) |
|
| 30 | 29 | imbi1d | |- ( c = ( ( # ` ( S ` A ) ) + 1 ) -> ( ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 31 | 30 | 2ralbidv | |- ( c = ( ( # ` ( S ` A ) ) + 1 ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 32 | 12 | ffvelcdmi | |- ( a e. dom S -> ( S ` a ) e. W ) |
| 33 | 8 32 | sselid | |- ( a e. dom S -> ( S ` a ) e. Word ( I X. 2o ) ) |
| 34 | lencl | |- ( ( S ` a ) e. Word ( I X. 2o ) -> ( # ` ( S ` a ) ) e. NN0 ) |
|
| 35 | 33 34 | syl | |- ( a e. dom S -> ( # ` ( S ` a ) ) e. NN0 ) |
| 36 | nn0nlt0 | |- ( ( # ` ( S ` a ) ) e. NN0 -> -. ( # ` ( S ` a ) ) < 0 ) |
|
| 37 | 35 36 | syl | |- ( a e. dom S -> -. ( # ` ( S ` a ) ) < 0 ) |
| 38 | 37 | pm2.21d | |- ( a e. dom S -> ( ( # ` ( S ` a ) ) < 0 -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 39 | 38 | adantr | |- ( ( a e. dom S /\ b e. dom S ) -> ( ( # ` ( S ` a ) ) < 0 -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 40 | 39 | rgen2 | |- A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < 0 -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) |
| 41 | simpl1 | |- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
|
| 42 | simpl3l | |- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> ( # ` ( S ` c ) ) = i ) |
|
| 43 | breq2 | |- ( ( # ` ( S ` c ) ) = i -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` c ) ) <-> ( # ` ( S ` a ) ) < i ) ) |
|
| 44 | 43 | imbi1d | |- ( ( # ` ( S ` c ) ) = i -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` c ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 45 | 44 | 2ralbidv | |- ( ( # ` ( S ` c ) ) = i -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` c ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 46 | 42 45 | syl | |- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` c ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 47 | 41 46 | mpbird | |- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` c ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 48 | simpl2l | |- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> c e. dom S ) |
|
| 49 | simpl2r | |- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> d e. dom S ) |
|
| 50 | simpl3r | |- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> ( S ` c ) = ( S ` d ) ) |
|
| 51 | simpr | |- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> -. ( c ` 0 ) = ( d ` 0 ) ) |
|
| 52 | 1 2 3 4 5 6 47 48 49 50 51 | efgredlem | |- -. ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) |
| 53 | iman | |- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) -> ( c ` 0 ) = ( d ` 0 ) ) <-> -. ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) ) |
|
| 54 | 52 53 | mpbir | |- ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) -> ( c ` 0 ) = ( d ` 0 ) ) |
| 55 | 54 | 3expia | |- ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) ) -> ( ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) -> ( c ` 0 ) = ( d ` 0 ) ) ) |
| 56 | 55 | expd | |- ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) ) -> ( ( # ` ( S ` c ) ) = i -> ( ( S ` c ) = ( S ` d ) -> ( c ` 0 ) = ( d ` 0 ) ) ) ) |
| 57 | 56 | ralrimivva | |- ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) -> A. c e. dom S A. d e. dom S ( ( # ` ( S ` c ) ) = i -> ( ( S ` c ) = ( S ` d ) -> ( c ` 0 ) = ( d ` 0 ) ) ) ) |
| 58 | 2fveq3 | |- ( c = a -> ( # ` ( S ` c ) ) = ( # ` ( S ` a ) ) ) |
|
| 59 | 58 | eqeq1d | |- ( c = a -> ( ( # ` ( S ` c ) ) = i <-> ( # ` ( S ` a ) ) = i ) ) |
| 60 | fveqeq2 | |- ( c = a -> ( ( S ` c ) = ( S ` d ) <-> ( S ` a ) = ( S ` d ) ) ) |
|
| 61 | fveq1 | |- ( c = a -> ( c ` 0 ) = ( a ` 0 ) ) |
|
| 62 | 61 | eqeq1d | |- ( c = a -> ( ( c ` 0 ) = ( d ` 0 ) <-> ( a ` 0 ) = ( d ` 0 ) ) ) |
| 63 | 60 62 | imbi12d | |- ( c = a -> ( ( ( S ` c ) = ( S ` d ) -> ( c ` 0 ) = ( d ` 0 ) ) <-> ( ( S ` a ) = ( S ` d ) -> ( a ` 0 ) = ( d ` 0 ) ) ) ) |
| 64 | 59 63 | imbi12d | |- ( c = a -> ( ( ( # ` ( S ` c ) ) = i -> ( ( S ` c ) = ( S ` d ) -> ( c ` 0 ) = ( d ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` d ) -> ( a ` 0 ) = ( d ` 0 ) ) ) ) ) |
| 65 | fveq2 | |- ( d = b -> ( S ` d ) = ( S ` b ) ) |
|
| 66 | 65 | eqeq2d | |- ( d = b -> ( ( S ` a ) = ( S ` d ) <-> ( S ` a ) = ( S ` b ) ) ) |
| 67 | fveq1 | |- ( d = b -> ( d ` 0 ) = ( b ` 0 ) ) |
|
| 68 | 67 | eqeq2d | |- ( d = b -> ( ( a ` 0 ) = ( d ` 0 ) <-> ( a ` 0 ) = ( b ` 0 ) ) ) |
| 69 | 66 68 | imbi12d | |- ( d = b -> ( ( ( S ` a ) = ( S ` d ) -> ( a ` 0 ) = ( d ` 0 ) ) <-> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 70 | 69 | imbi2d | |- ( d = b -> ( ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` d ) -> ( a ` 0 ) = ( d ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 71 | 64 70 | cbvral2vw | |- ( A. c e. dom S A. d e. dom S ( ( # ` ( S ` c ) ) = i -> ( ( S ` c ) = ( S ` d ) -> ( c ` 0 ) = ( d ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 72 | 57 71 | sylib | |- ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 73 | 72 | ancli | |- ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 74 | 35 | adantr | |- ( ( a e. dom S /\ b e. dom S ) -> ( # ` ( S ` a ) ) e. NN0 ) |
| 75 | nn0leltp1 | |- ( ( ( # ` ( S ` a ) ) e. NN0 /\ i e. NN0 ) -> ( ( # ` ( S ` a ) ) <_ i <-> ( # ` ( S ` a ) ) < ( i + 1 ) ) ) |
|
| 76 | nn0re | |- ( ( # ` ( S ` a ) ) e. NN0 -> ( # ` ( S ` a ) ) e. RR ) |
|
| 77 | nn0re | |- ( i e. NN0 -> i e. RR ) |
|
| 78 | leloe | |- ( ( ( # ` ( S ` a ) ) e. RR /\ i e. RR ) -> ( ( # ` ( S ` a ) ) <_ i <-> ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) ) ) |
|
| 79 | 76 77 78 | syl2an | |- ( ( ( # ` ( S ` a ) ) e. NN0 /\ i e. NN0 ) -> ( ( # ` ( S ` a ) ) <_ i <-> ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) ) ) |
| 80 | 75 79 | bitr3d | |- ( ( ( # ` ( S ` a ) ) e. NN0 /\ i e. NN0 ) -> ( ( # ` ( S ` a ) ) < ( i + 1 ) <-> ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) ) ) |
| 81 | 80 | ancoms | |- ( ( i e. NN0 /\ ( # ` ( S ` a ) ) e. NN0 ) -> ( ( # ` ( S ` a ) ) < ( i + 1 ) <-> ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) ) ) |
| 82 | 74 81 | sylan2 | |- ( ( i e. NN0 /\ ( a e. dom S /\ b e. dom S ) ) -> ( ( # ` ( S ` a ) ) < ( i + 1 ) <-> ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) ) ) |
| 83 | 82 | imbi1d | |- ( ( i e. NN0 /\ ( a e. dom S /\ b e. dom S ) ) -> ( ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 84 | jaob | |- ( ( ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
|
| 85 | 83 84 | bitrdi | |- ( ( i e. NN0 /\ ( a e. dom S /\ b e. dom S ) ) -> ( ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) ) |
| 86 | 85 | 2ralbidva | |- ( i e. NN0 -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) ) |
| 87 | r19.26-2 | |- ( A. a e. dom S A. b e. dom S ( ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) <-> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
|
| 88 | 86 87 | bitrdi | |- ( i e. NN0 -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) ) |
| 89 | 73 88 | imbitrrid | |- ( i e. NN0 -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 90 | 22 25 28 31 40 89 | nn0ind | |- ( ( ( # ` ( S ` A ) ) + 1 ) e. NN0 -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 91 | 19 90 | syl | |- ( ( A e. dom S /\ B e. dom S ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 92 | 17 | nn0red | |- ( ( A e. dom S /\ B e. dom S ) -> ( # ` ( S ` A ) ) e. RR ) |
| 93 | 92 | ltp1d | |- ( ( A e. dom S /\ B e. dom S ) -> ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) ) |
| 94 | 2fveq3 | |- ( a = A -> ( # ` ( S ` a ) ) = ( # ` ( S ` A ) ) ) |
|
| 95 | 94 | breq1d | |- ( a = A -> ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) <-> ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) ) ) |
| 96 | fveqeq2 | |- ( a = A -> ( ( S ` a ) = ( S ` b ) <-> ( S ` A ) = ( S ` b ) ) ) |
|
| 97 | fveq1 | |- ( a = A -> ( a ` 0 ) = ( A ` 0 ) ) |
|
| 98 | 97 | eqeq1d | |- ( a = A -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( A ` 0 ) = ( b ` 0 ) ) ) |
| 99 | 96 98 | imbi12d | |- ( a = A -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` A ) = ( S ` b ) -> ( A ` 0 ) = ( b ` 0 ) ) ) ) |
| 100 | 95 99 | imbi12d | |- ( a = A -> ( ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` A ) = ( S ` b ) -> ( A ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 101 | fveq2 | |- ( b = B -> ( S ` b ) = ( S ` B ) ) |
|
| 102 | 101 | eqeq2d | |- ( b = B -> ( ( S ` A ) = ( S ` b ) <-> ( S ` A ) = ( S ` B ) ) ) |
| 103 | fveq1 | |- ( b = B -> ( b ` 0 ) = ( B ` 0 ) ) |
|
| 104 | 103 | eqeq2d | |- ( b = B -> ( ( A ` 0 ) = ( b ` 0 ) <-> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 105 | 102 104 | imbi12d | |- ( b = B -> ( ( ( S ` A ) = ( S ` b ) -> ( A ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` A ) = ( S ` B ) -> ( A ` 0 ) = ( B ` 0 ) ) ) ) |
| 106 | 105 | imbi2d | |- ( b = B -> ( ( ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` A ) = ( S ` b ) -> ( A ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` A ) = ( S ` B ) -> ( A ` 0 ) = ( B ` 0 ) ) ) ) ) |
| 107 | 100 106 | rspc2v | |- ( ( A e. dom S /\ B e. dom S ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) -> ( ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` A ) = ( S ` B ) -> ( A ` 0 ) = ( B ` 0 ) ) ) ) ) |
| 108 | 91 93 107 | mp2d | |- ( ( A e. dom S /\ B e. dom S ) -> ( ( S ` A ) = ( S ` B ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 109 | 108 | 3impia | |- ( ( A e. dom S /\ B e. dom S /\ ( S ` A ) = ( S ` B ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |