This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl .) (Contributed by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| Assertion | uniiccmbl | |- ( ph -> U. ran ( [,] o. F ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | 1 | uniiccdif | |- ( ph -> ( U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) /\ ( vol* ` ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) ) = 0 ) ) |
| 5 | 4 | simpld | |- ( ph -> U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) ) |
| 6 | undif | |- ( U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) <-> ( U. ran ( (,) o. F ) u. ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) ) = U. ran ( [,] o. F ) ) |
|
| 7 | 5 6 | sylib | |- ( ph -> ( U. ran ( (,) o. F ) u. ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) ) = U. ran ( [,] o. F ) ) |
| 8 | 1 2 3 | uniioombl | |- ( ph -> U. ran ( (,) o. F ) e. dom vol ) |
| 9 | ovolficcss | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |
|
| 10 | 1 9 | syl | |- ( ph -> U. ran ( [,] o. F ) C_ RR ) |
| 11 | 10 | ssdifssd | |- ( ph -> ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) C_ RR ) |
| 12 | 4 | simprd | |- ( ph -> ( vol* ` ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) ) = 0 ) |
| 13 | nulmbl | |- ( ( ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) C_ RR /\ ( vol* ` ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) ) = 0 ) -> ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) e. dom vol ) |
|
| 14 | 11 12 13 | syl2anc | |- ( ph -> ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) e. dom vol ) |
| 15 | unmbl | |- ( ( U. ran ( (,) o. F ) e. dom vol /\ ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) e. dom vol ) -> ( U. ran ( (,) o. F ) u. ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) ) e. dom vol ) |
|
| 16 | 8 14 15 | syl2anc | |- ( ph -> ( U. ran ( (,) o. F ) u. ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) ) e. dom vol ) |
| 17 | 7 16 | eqeltrrd | |- ( ph -> U. ran ( [,] o. F ) e. dom vol ) |