This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of Gleason p. 140. (Contributed by NM, 31-Jul-2004) (Proof shortened by Mario Carneiro, 13-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znnen | |- ZZ ~~ NN |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon | |- _om e. On |
|
| 2 | nnenom | |- NN ~~ _om |
|
| 3 | 2 | ensymi | |- _om ~~ NN |
| 4 | isnumi | |- ( ( _om e. On /\ _om ~~ NN ) -> NN e. dom card ) |
|
| 5 | 1 3 4 | mp2an | |- NN e. dom card |
| 6 | xpnum | |- ( ( NN e. dom card /\ NN e. dom card ) -> ( NN X. NN ) e. dom card ) |
|
| 7 | 5 5 6 | mp2an | |- ( NN X. NN ) e. dom card |
| 8 | subf | |- - : ( CC X. CC ) --> CC |
|
| 9 | ffun | |- ( - : ( CC X. CC ) --> CC -> Fun - ) |
|
| 10 | 8 9 | ax-mp | |- Fun - |
| 11 | nnsscn | |- NN C_ CC |
|
| 12 | xpss12 | |- ( ( NN C_ CC /\ NN C_ CC ) -> ( NN X. NN ) C_ ( CC X. CC ) ) |
|
| 13 | 11 11 12 | mp2an | |- ( NN X. NN ) C_ ( CC X. CC ) |
| 14 | 8 | fdmi | |- dom - = ( CC X. CC ) |
| 15 | 13 14 | sseqtrri | |- ( NN X. NN ) C_ dom - |
| 16 | fores | |- ( ( Fun - /\ ( NN X. NN ) C_ dom - ) -> ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ( - " ( NN X. NN ) ) ) |
|
| 17 | 10 15 16 | mp2an | |- ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ( - " ( NN X. NN ) ) |
| 18 | dfz2 | |- ZZ = ( - " ( NN X. NN ) ) |
|
| 19 | foeq3 | |- ( ZZ = ( - " ( NN X. NN ) ) -> ( ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ZZ <-> ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ( - " ( NN X. NN ) ) ) ) |
|
| 20 | 18 19 | ax-mp | |- ( ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ZZ <-> ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ( - " ( NN X. NN ) ) ) |
| 21 | 17 20 | mpbir | |- ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ZZ |
| 22 | fodomnum | |- ( ( NN X. NN ) e. dom card -> ( ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ZZ -> ZZ ~<_ ( NN X. NN ) ) ) |
|
| 23 | 7 21 22 | mp2 | |- ZZ ~<_ ( NN X. NN ) |
| 24 | xpnnen | |- ( NN X. NN ) ~~ NN |
|
| 25 | domentr | |- ( ( ZZ ~<_ ( NN X. NN ) /\ ( NN X. NN ) ~~ NN ) -> ZZ ~<_ NN ) |
|
| 26 | 23 24 25 | mp2an | |- ZZ ~<_ NN |
| 27 | zex | |- ZZ e. _V |
|
| 28 | nnssz | |- NN C_ ZZ |
|
| 29 | ssdomg | |- ( ZZ e. _V -> ( NN C_ ZZ -> NN ~<_ ZZ ) ) |
|
| 30 | 27 28 29 | mp2 | |- NN ~<_ ZZ |
| 31 | sbth | |- ( ( ZZ ~<_ NN /\ NN ~<_ ZZ ) -> ZZ ~~ NN ) |
|
| 32 | 26 30 31 | mp2an | |- ZZ ~~ NN |