This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dyadmbl . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| dyadmbl.2 | |- G = { z e. A | A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) } |
||
| dyadmbl.3 | |- ( ph -> A C_ ran F ) |
||
| Assertion | dyadmbllem | |- ( ph -> U. ( [,] " A ) = U. ( [,] " G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| 2 | dyadmbl.2 | |- G = { z e. A | A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) } |
|
| 3 | dyadmbl.3 | |- ( ph -> A C_ ran F ) |
|
| 4 | eluni2 | |- ( a e. U. ( [,] " A ) <-> E. i e. ( [,] " A ) a e. i ) |
|
| 5 | iccf | |- [,] : ( RR* X. RR* ) --> ~P RR* |
|
| 6 | ffn | |- ( [,] : ( RR* X. RR* ) --> ~P RR* -> [,] Fn ( RR* X. RR* ) ) |
|
| 7 | 5 6 | ax-mp | |- [,] Fn ( RR* X. RR* ) |
| 8 | 1 | dyadf | |- F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) |
| 9 | frn | |- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ran F C_ ( <_ i^i ( RR X. RR ) ) |
| 11 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 12 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 13 | 11 12 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 14 | 10 13 | sstri | |- ran F C_ ( RR* X. RR* ) |
| 15 | 3 14 | sstrdi | |- ( ph -> A C_ ( RR* X. RR* ) ) |
| 16 | eleq2 | |- ( i = ( [,] ` t ) -> ( a e. i <-> a e. ( [,] ` t ) ) ) |
|
| 17 | 16 | rexima | |- ( ( [,] Fn ( RR* X. RR* ) /\ A C_ ( RR* X. RR* ) ) -> ( E. i e. ( [,] " A ) a e. i <-> E. t e. A a e. ( [,] ` t ) ) ) |
| 18 | 7 15 17 | sylancr | |- ( ph -> ( E. i e. ( [,] " A ) a e. i <-> E. t e. A a e. ( [,] ` t ) ) ) |
| 19 | ssrab2 | |- { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } C_ A |
|
| 20 | 3 | adantr | |- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> A C_ ran F ) |
| 21 | 19 20 | sstrid | |- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } C_ ran F ) |
| 22 | simprl | |- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> t e. A ) |
|
| 23 | ssid | |- ( [,] ` t ) C_ ( [,] ` t ) |
|
| 24 | fveq2 | |- ( a = t -> ( [,] ` a ) = ( [,] ` t ) ) |
|
| 25 | 24 | sseq2d | |- ( a = t -> ( ( [,] ` t ) C_ ( [,] ` a ) <-> ( [,] ` t ) C_ ( [,] ` t ) ) ) |
| 26 | 25 | rspcev | |- ( ( t e. A /\ ( [,] ` t ) C_ ( [,] ` t ) ) -> E. a e. A ( [,] ` t ) C_ ( [,] ` a ) ) |
| 27 | 22 23 26 | sylancl | |- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> E. a e. A ( [,] ` t ) C_ ( [,] ` a ) ) |
| 28 | rabn0 | |- ( { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } =/= (/) <-> E. a e. A ( [,] ` t ) C_ ( [,] ` a ) ) |
|
| 29 | 27 28 | sylibr | |- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } =/= (/) ) |
| 30 | 1 | dyadmax | |- ( ( { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } C_ ran F /\ { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } =/= (/) ) -> E. m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) |
| 31 | 21 29 30 | syl2anc | |- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> E. m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) |
| 32 | fveq2 | |- ( a = m -> ( [,] ` a ) = ( [,] ` m ) ) |
|
| 33 | 32 | sseq2d | |- ( a = m -> ( ( [,] ` t ) C_ ( [,] ` a ) <-> ( [,] ` t ) C_ ( [,] ` m ) ) ) |
| 34 | 33 | elrab | |- ( m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } <-> ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) |
| 35 | simprlr | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( [,] ` t ) C_ ( [,] ` m ) ) |
|
| 36 | simplrr | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> a e. ( [,] ` t ) ) |
|
| 37 | 35 36 | sseldd | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> a e. ( [,] ` m ) ) |
| 38 | simprll | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> m e. A ) |
|
| 39 | fveq2 | |- ( a = w -> ( [,] ` a ) = ( [,] ` w ) ) |
|
| 40 | 39 | sseq2d | |- ( a = w -> ( ( [,] ` t ) C_ ( [,] ` a ) <-> ( [,] ` t ) C_ ( [,] ` w ) ) ) |
| 41 | 40 | elrab | |- ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } <-> ( w e. A /\ ( [,] ` t ) C_ ( [,] ` w ) ) ) |
| 42 | 41 | imbi1i | |- ( ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) <-> ( ( w e. A /\ ( [,] ` t ) C_ ( [,] ` w ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
| 43 | impexp | |- ( ( ( w e. A /\ ( [,] ` t ) C_ ( [,] ` w ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) <-> ( w e. A -> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) |
|
| 44 | 42 43 | bitri | |- ( ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) <-> ( w e. A -> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) |
| 45 | impexp | |- ( ( ( ( [,] ` t ) C_ ( [,] ` w ) /\ ( [,] ` m ) C_ ( [,] ` w ) ) -> m = w ) <-> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
|
| 46 | sstr2 | |- ( ( [,] ` t ) C_ ( [,] ` m ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> ( [,] ` t ) C_ ( [,] ` w ) ) ) |
|
| 47 | 46 | ad2antll | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> ( [,] ` t ) C_ ( [,] ` w ) ) ) |
| 48 | 47 | ancrd | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> ( ( [,] ` t ) C_ ( [,] ` w ) /\ ( [,] ` m ) C_ ( [,] ` w ) ) ) ) |
| 49 | 48 | imim1d | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( ( ( [,] ` t ) C_ ( [,] ` w ) /\ ( [,] ` m ) C_ ( [,] ` w ) ) -> m = w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
| 50 | 45 49 | biimtrrid | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
| 51 | 50 | imim2d | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( w e. A -> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( w e. A -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) |
| 52 | 44 51 | biimtrid | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) -> ( w e. A -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) |
| 53 | 52 | ralimdv2 | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
| 54 | 53 | impr | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) |
| 55 | fveq2 | |- ( z = m -> ( [,] ` z ) = ( [,] ` m ) ) |
|
| 56 | 55 | sseq1d | |- ( z = m -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` m ) C_ ( [,] ` w ) ) ) |
| 57 | equequ1 | |- ( z = m -> ( z = w <-> m = w ) ) |
|
| 58 | 56 57 | imbi12d | |- ( z = m -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
| 59 | 58 | ralbidv | |- ( z = m -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
| 60 | 59 2 | elrab2 | |- ( m e. G <-> ( m e. A /\ A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
| 61 | 38 54 60 | sylanbrc | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> m e. G ) |
| 62 | ffun | |- ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) |
|
| 63 | 5 62 | ax-mp | |- Fun [,] |
| 64 | 2 | ssrab3 | |- G C_ A |
| 65 | 64 15 | sstrid | |- ( ph -> G C_ ( RR* X. RR* ) ) |
| 66 | 5 | fdmi | |- dom [,] = ( RR* X. RR* ) |
| 67 | 65 66 | sseqtrrdi | |- ( ph -> G C_ dom [,] ) |
| 68 | 67 | ad2antrr | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> G C_ dom [,] ) |
| 69 | funfvima2 | |- ( ( Fun [,] /\ G C_ dom [,] ) -> ( m e. G -> ( [,] ` m ) e. ( [,] " G ) ) ) |
|
| 70 | 63 68 69 | sylancr | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( m e. G -> ( [,] ` m ) e. ( [,] " G ) ) ) |
| 71 | 61 70 | mpd | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( [,] ` m ) e. ( [,] " G ) ) |
| 72 | elunii | |- ( ( a e. ( [,] ` m ) /\ ( [,] ` m ) e. ( [,] " G ) ) -> a e. U. ( [,] " G ) ) |
|
| 73 | 37 71 72 | syl2anc | |- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> a e. U. ( [,] " G ) ) |
| 74 | 73 | exp32 | |- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) -> ( A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> a e. U. ( [,] " G ) ) ) ) |
| 75 | 34 74 | biimtrid | |- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> ( m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> a e. U. ( [,] " G ) ) ) ) |
| 76 | 75 | rexlimdv | |- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> ( E. m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> a e. U. ( [,] " G ) ) ) |
| 77 | 31 76 | mpd | |- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> a e. U. ( [,] " G ) ) |
| 78 | 77 | rexlimdvaa | |- ( ph -> ( E. t e. A a e. ( [,] ` t ) -> a e. U. ( [,] " G ) ) ) |
| 79 | 18 78 | sylbid | |- ( ph -> ( E. i e. ( [,] " A ) a e. i -> a e. U. ( [,] " G ) ) ) |
| 80 | 4 79 | biimtrid | |- ( ph -> ( a e. U. ( [,] " A ) -> a e. U. ( [,] " G ) ) ) |
| 81 | 80 | ssrdv | |- ( ph -> U. ( [,] " A ) C_ U. ( [,] " G ) ) |
| 82 | imass2 | |- ( G C_ A -> ( [,] " G ) C_ ( [,] " A ) ) |
|
| 83 | 64 82 | ax-mp | |- ( [,] " G ) C_ ( [,] " A ) |
| 84 | uniss | |- ( ( [,] " G ) C_ ( [,] " A ) -> U. ( [,] " G ) C_ U. ( [,] " A ) ) |
|
| 85 | 83 84 | mp1i | |- ( ph -> U. ( [,] " G ) C_ U. ( [,] " A ) ) |
| 86 | 81 85 | eqssd | |- ( ph -> U. ( [,] " A ) = U. ( [,] " G ) ) |