This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ennn | |- NN0 ~~ NN |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ex | |- NN0 e. _V |
|
| 2 | nnex | |- NN e. _V |
|
| 3 | nn0p1nn | |- ( x e. NN0 -> ( x + 1 ) e. NN ) |
|
| 4 | nnm1nn0 | |- ( y e. NN -> ( y - 1 ) e. NN0 ) |
|
| 5 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 6 | nn0cn | |- ( x e. NN0 -> x e. CC ) |
|
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | subadd | |- ( ( y e. CC /\ 1 e. CC /\ x e. CC ) -> ( ( y - 1 ) = x <-> ( 1 + x ) = y ) ) |
|
| 9 | 7 8 | mp3an2 | |- ( ( y e. CC /\ x e. CC ) -> ( ( y - 1 ) = x <-> ( 1 + x ) = y ) ) |
| 10 | eqcom | |- ( x = ( y - 1 ) <-> ( y - 1 ) = x ) |
|
| 11 | eqcom | |- ( y = ( 1 + x ) <-> ( 1 + x ) = y ) |
|
| 12 | 9 10 11 | 3bitr4g | |- ( ( y e. CC /\ x e. CC ) -> ( x = ( y - 1 ) <-> y = ( 1 + x ) ) ) |
| 13 | addcom | |- ( ( 1 e. CC /\ x e. CC ) -> ( 1 + x ) = ( x + 1 ) ) |
|
| 14 | 7 13 | mpan | |- ( x e. CC -> ( 1 + x ) = ( x + 1 ) ) |
| 15 | 14 | eqeq2d | |- ( x e. CC -> ( y = ( 1 + x ) <-> y = ( x + 1 ) ) ) |
| 16 | 15 | adantl | |- ( ( y e. CC /\ x e. CC ) -> ( y = ( 1 + x ) <-> y = ( x + 1 ) ) ) |
| 17 | 12 16 | bitrd | |- ( ( y e. CC /\ x e. CC ) -> ( x = ( y - 1 ) <-> y = ( x + 1 ) ) ) |
| 18 | 5 6 17 | syl2anr | |- ( ( x e. NN0 /\ y e. NN ) -> ( x = ( y - 1 ) <-> y = ( x + 1 ) ) ) |
| 19 | 1 2 3 4 18 | en3i | |- NN0 ~~ NN |