This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for opnmbl . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| Assertion | opnmbllem | |- ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| 2 | fveq2 | |- ( z = w -> ( [,] ` z ) = ( [,] ` w ) ) |
|
| 3 | 2 | sseq1d | |- ( z = w -> ( ( [,] ` z ) C_ A <-> ( [,] ` w ) C_ A ) ) |
| 4 | 3 | elrab | |- ( w e. { z e. ran F | ( [,] ` z ) C_ A } <-> ( w e. ran F /\ ( [,] ` w ) C_ A ) ) |
| 5 | simprr | |- ( ( A e. ( topGen ` ran (,) ) /\ ( w e. ran F /\ ( [,] ` w ) C_ A ) ) -> ( [,] ` w ) C_ A ) |
|
| 6 | fvex | |- ( [,] ` w ) e. _V |
|
| 7 | 6 | elpw | |- ( ( [,] ` w ) e. ~P A <-> ( [,] ` w ) C_ A ) |
| 8 | 5 7 | sylibr | |- ( ( A e. ( topGen ` ran (,) ) /\ ( w e. ran F /\ ( [,] ` w ) C_ A ) ) -> ( [,] ` w ) e. ~P A ) |
| 9 | 4 8 | sylan2b | |- ( ( A e. ( topGen ` ran (,) ) /\ w e. { z e. ran F | ( [,] ` z ) C_ A } ) -> ( [,] ` w ) e. ~P A ) |
| 10 | 9 | ralrimiva | |- ( A e. ( topGen ` ran (,) ) -> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) |
| 11 | iccf | |- [,] : ( RR* X. RR* ) --> ~P RR* |
|
| 12 | ffun | |- ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) |
|
| 13 | 11 12 | ax-mp | |- Fun [,] |
| 14 | ssrab2 | |- { z e. ran F | ( [,] ` z ) C_ A } C_ ran F |
|
| 15 | 1 | dyadf | |- F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) |
| 16 | frn | |- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) |
|
| 17 | 15 16 | ax-mp | |- ran F C_ ( <_ i^i ( RR X. RR ) ) |
| 18 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 19 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 20 | 18 19 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 21 | 17 20 | sstri | |- ran F C_ ( RR* X. RR* ) |
| 22 | 14 21 | sstri | |- { z e. ran F | ( [,] ` z ) C_ A } C_ ( RR* X. RR* ) |
| 23 | 11 | fdmi | |- dom [,] = ( RR* X. RR* ) |
| 24 | 22 23 | sseqtrri | |- { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] |
| 25 | funimass4 | |- ( ( Fun [,] /\ { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] ) -> ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) ) |
|
| 26 | 13 24 25 | mp2an | |- ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) |
| 27 | 10 26 | sylibr | |- ( A e. ( topGen ` ran (,) ) -> ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A ) |
| 28 | sspwuni | |- ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ A ) |
|
| 29 | 27 28 | sylib | |- ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ A ) |
| 30 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 31 | 30 | rexmet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 32 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 33 | 30 32 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 34 | 33 | mopni2 | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( topGen ` ran (,) ) /\ w e. A ) -> E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A ) |
| 35 | 31 34 | mp3an1 | |- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A ) |
| 36 | elssuni | |- ( A e. ( topGen ` ran (,) ) -> A C_ U. ( topGen ` ran (,) ) ) |
|
| 37 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 38 | 36 37 | sseqtrrdi | |- ( A e. ( topGen ` ran (,) ) -> A C_ RR ) |
| 39 | 38 | sselda | |- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> w e. RR ) |
| 40 | rpre | |- ( r e. RR+ -> r e. RR ) |
|
| 41 | 30 | bl2ioo | |- ( ( w e. RR /\ r e. RR ) -> ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( w - r ) (,) ( w + r ) ) ) |
| 42 | 39 40 41 | syl2an | |- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( w - r ) (,) ( w + r ) ) ) |
| 43 | 42 | sseq1d | |- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A <-> ( ( w - r ) (,) ( w + r ) ) C_ A ) ) |
| 44 | 2re | |- 2 e. RR |
|
| 45 | 1lt2 | |- 1 < 2 |
|
| 46 | expnlbnd | |- ( ( r e. RR+ /\ 2 e. RR /\ 1 < 2 ) -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) |
|
| 47 | 44 45 46 | mp3an23 | |- ( r e. RR+ -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) |
| 48 | 47 | ad2antrl | |- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) |
| 49 | 39 | ad2antrr | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. RR ) |
| 50 | 2nn | |- 2 e. NN |
|
| 51 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 52 | 51 | ad2antrl | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> n e. NN0 ) |
| 53 | nnexpcl | |- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
|
| 54 | 50 52 53 | sylancr | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. NN ) |
| 55 | 54 | nnred | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. RR ) |
| 56 | 49 55 | remulcld | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w x. ( 2 ^ n ) ) e. RR ) |
| 57 | fllelt | |- ( ( w x. ( 2 ^ n ) ) e. RR -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) /\ ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) ) |
|
| 58 | 56 57 | syl | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) /\ ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) ) |
| 59 | 58 | simpld | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) |
| 60 | reflcl | |- ( ( w x. ( 2 ^ n ) ) e. RR -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR ) |
|
| 61 | 56 60 | syl | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR ) |
| 62 | 54 | nngt0d | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> 0 < ( 2 ^ n ) ) |
| 63 | ledivmul2 | |- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR /\ w e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w <-> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) ) |
|
| 64 | 61 49 55 62 63 | syl112anc | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w <-> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) ) |
| 65 | 59 64 | mpbird | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w ) |
| 66 | peano2re | |- ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR ) |
|
| 67 | 61 66 | syl | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR ) |
| 68 | 67 54 | nndivred | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) e. RR ) |
| 69 | 58 | simprd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) |
| 70 | ltmuldiv | |- ( ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
|
| 71 | 49 67 55 62 70 | syl112anc | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
| 72 | 69 71 | mpbid | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) |
| 73 | 49 68 72 | ltled | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) |
| 74 | 61 54 | nndivred | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. RR ) |
| 75 | elicc2 | |- ( ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. RR /\ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) e. RR ) -> ( w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) <-> ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w /\ w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) ) |
|
| 76 | 74 68 75 | syl2anc | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) <-> ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w /\ w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) ) |
| 77 | 49 65 73 76 | mpbir3and | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
| 78 | 56 | flcld | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ ) |
| 79 | 1 | dyadval | |- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ /\ n e. NN0 ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) = <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) |
| 80 | 78 52 79 | syl2anc | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) = <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) |
| 81 | 80 | fveq2d | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) = ( [,] ` <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) ) |
| 82 | df-ov | |- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) = ( [,] ` <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) |
|
| 83 | 81 82 | eqtr4di | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) = ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
| 84 | 77 83 | eleqtrrd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) ) |
| 85 | fveq2 | |- ( z = ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) -> ( [,] ` z ) = ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) ) |
|
| 86 | 85 | sseq1d | |- ( z = ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) -> ( ( [,] ` z ) C_ A <-> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ A ) ) |
| 87 | ffn | |- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) |
|
| 88 | 15 87 | ax-mp | |- F Fn ( ZZ X. NN0 ) |
| 89 | fnovrn | |- ( ( F Fn ( ZZ X. NN0 ) /\ ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ /\ n e. NN0 ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. ran F ) |
|
| 90 | 88 78 52 89 | mp3an2i | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. ran F ) |
| 91 | simplrl | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> r e. RR+ ) |
|
| 92 | 91 | rpred | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> r e. RR ) |
| 93 | 49 92 | resubcld | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) e. RR ) |
| 94 | 93 | rexrd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) e. RR* ) |
| 95 | 49 92 | readdcld | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + r ) e. RR ) |
| 96 | 95 | rexrd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + r ) e. RR* ) |
| 97 | 74 92 | readdcld | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) e. RR ) |
| 98 | 61 | recnd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. CC ) |
| 99 | 1cnd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> 1 e. CC ) |
|
| 100 | 55 | recnd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. CC ) |
| 101 | 54 | nnne0d | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) =/= 0 ) |
| 102 | 98 99 100 101 | divdird | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) = ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) ) |
| 103 | 54 | nnrecred | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 1 / ( 2 ^ n ) ) e. RR ) |
| 104 | simprr | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 1 / ( 2 ^ n ) ) < r ) |
|
| 105 | 103 92 74 104 | ltadd2dd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) |
| 106 | 102 105 | eqbrtrd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) |
| 107 | 49 68 97 72 106 | lttrd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) |
| 108 | 49 92 74 | ltsubaddd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) ) |
| 109 | 107 108 | mpbird | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
| 110 | 49 103 | readdcld | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + ( 1 / ( 2 ^ n ) ) ) e. RR ) |
| 111 | 74 49 103 65 | leadd1dd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) <_ ( w + ( 1 / ( 2 ^ n ) ) ) ) |
| 112 | 102 111 | eqbrtrd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) <_ ( w + ( 1 / ( 2 ^ n ) ) ) ) |
| 113 | 103 92 49 104 | ltadd2dd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + ( 1 / ( 2 ^ n ) ) ) < ( w + r ) ) |
| 114 | 68 110 95 112 113 | lelttrd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( w + r ) ) |
| 115 | iccssioo | |- ( ( ( ( w - r ) e. RR* /\ ( w + r ) e. RR* ) /\ ( ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) /\ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( w + r ) ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) |
|
| 116 | 94 96 109 114 115 | syl22anc | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) |
| 117 | 83 116 | eqsstrd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) |
| 118 | simplrr | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w - r ) (,) ( w + r ) ) C_ A ) |
|
| 119 | 117 118 | sstrd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ A ) |
| 120 | 86 90 119 | elrabd | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } ) |
| 121 | funfvima2 | |- ( ( Fun [,] /\ { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
|
| 122 | 13 24 121 | mp2an | |- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 123 | 120 122 | syl | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 124 | elunii | |- ( ( w e. ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) /\ ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
|
| 125 | 84 123 124 | syl2anc | |- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 126 | 48 125 | rexlimddv | |- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 127 | 126 | expr | |- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( ( w - r ) (,) ( w + r ) ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
| 128 | 43 127 | sylbid | |- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
| 129 | 128 | rexlimdva | |- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> ( E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
| 130 | 35 129 | mpd | |- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 131 | 29 130 | eqelssd | |- ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) = A ) |
| 132 | fveq2 | |- ( c = a -> ( [,] ` c ) = ( [,] ` a ) ) |
|
| 133 | 132 | sseq1d | |- ( c = a -> ( ( [,] ` c ) C_ ( [,] ` b ) <-> ( [,] ` a ) C_ ( [,] ` b ) ) ) |
| 134 | equequ1 | |- ( c = a -> ( c = b <-> a = b ) ) |
|
| 135 | 133 134 | imbi12d | |- ( c = a -> ( ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) <-> ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) ) ) |
| 136 | 135 | ralbidv | |- ( c = a -> ( A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) <-> A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) ) ) |
| 137 | 136 | cbvrabv | |- { c e. { z e. ran F | ( [,] ` z ) C_ A } | A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) } = { a e. { z e. ran F | ( [,] ` z ) C_ A } | A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) } |
| 138 | 14 | a1i | |- ( A e. ( topGen ` ran (,) ) -> { z e. ran F | ( [,] ` z ) C_ A } C_ ran F ) |
| 139 | 1 137 138 | dyadmbl | |- ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) e. dom vol ) |
| 140 | 131 139 | eqeltrrd | |- ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |