This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| Assertion | dyaddisj | |- ( ( A e. ran F /\ B e. ran F ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| 2 | 1 | dyadf | |- F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) |
| 3 | ffn | |- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) |
|
| 4 | ovelrn | |- ( F Fn ( ZZ X. NN0 ) -> ( A e. ran F <-> E. a e. ZZ E. c e. NN0 A = ( a F c ) ) ) |
|
| 5 | ovelrn | |- ( F Fn ( ZZ X. NN0 ) -> ( B e. ran F <-> E. b e. ZZ E. d e. NN0 B = ( b F d ) ) ) |
|
| 6 | 4 5 | anbi12d | |- ( F Fn ( ZZ X. NN0 ) -> ( ( A e. ran F /\ B e. ran F ) <-> ( E. a e. ZZ E. c e. NN0 A = ( a F c ) /\ E. b e. ZZ E. d e. NN0 B = ( b F d ) ) ) ) |
| 7 | 2 3 6 | mp2b | |- ( ( A e. ran F /\ B e. ran F ) <-> ( E. a e. ZZ E. c e. NN0 A = ( a F c ) /\ E. b e. ZZ E. d e. NN0 B = ( b F d ) ) ) |
| 8 | reeanv | |- ( E. a e. ZZ E. b e. ZZ ( E. c e. NN0 A = ( a F c ) /\ E. d e. NN0 B = ( b F d ) ) <-> ( E. a e. ZZ E. c e. NN0 A = ( a F c ) /\ E. b e. ZZ E. d e. NN0 B = ( b F d ) ) ) |
|
| 9 | 7 8 | bitr4i | |- ( ( A e. ran F /\ B e. ran F ) <-> E. a e. ZZ E. b e. ZZ ( E. c e. NN0 A = ( a F c ) /\ E. d e. NN0 B = ( b F d ) ) ) |
| 10 | reeanv | |- ( E. c e. NN0 E. d e. NN0 ( A = ( a F c ) /\ B = ( b F d ) ) <-> ( E. c e. NN0 A = ( a F c ) /\ E. d e. NN0 B = ( b F d ) ) ) |
|
| 11 | nn0re | |- ( c e. NN0 -> c e. RR ) |
|
| 12 | 11 | ad2antrl | |- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) -> c e. RR ) |
| 13 | nn0re | |- ( d e. NN0 -> d e. RR ) |
|
| 14 | 13 | ad2antll | |- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) -> d e. RR ) |
| 15 | 1 | dyaddisjlem | |- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) /\ c <_ d ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) |
| 16 | ancom | |- ( ( a e. ZZ /\ b e. ZZ ) <-> ( b e. ZZ /\ a e. ZZ ) ) |
|
| 17 | ancom | |- ( ( c e. NN0 /\ d e. NN0 ) <-> ( d e. NN0 /\ c e. NN0 ) ) |
|
| 18 | 16 17 | anbi12i | |- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) <-> ( ( b e. ZZ /\ a e. ZZ ) /\ ( d e. NN0 /\ c e. NN0 ) ) ) |
| 19 | 1 | dyaddisjlem | |- ( ( ( ( b e. ZZ /\ a e. ZZ ) /\ ( d e. NN0 /\ c e. NN0 ) ) /\ d <_ c ) -> ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) ) |
| 20 | 18 19 | sylanb | |- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) /\ d <_ c ) -> ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) ) |
| 21 | orcom | |- ( ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) <-> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) ) ) |
|
| 22 | incom | |- ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) |
|
| 23 | 22 | eqeq1i | |- ( ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) <-> ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) |
| 24 | 21 23 | orbi12i | |- ( ( ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) <-> ( ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) |
| 25 | df-3or | |- ( ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) <-> ( ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) ) |
|
| 26 | df-3or | |- ( ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) <-> ( ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) |
|
| 27 | 24 25 26 | 3bitr4i | |- ( ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) <-> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) |
| 28 | 20 27 | sylib | |- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) /\ d <_ c ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) |
| 29 | 12 14 15 28 | lecasei | |- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) |
| 30 | simpl | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> A = ( a F c ) ) |
|
| 31 | 30 | fveq2d | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( [,] ` A ) = ( [,] ` ( a F c ) ) ) |
| 32 | simpr | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> B = ( b F d ) ) |
|
| 33 | 32 | fveq2d | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( [,] ` B ) = ( [,] ` ( b F d ) ) ) |
| 34 | 31 33 | sseq12d | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( [,] ` A ) C_ ( [,] ` B ) <-> ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) |
| 35 | 33 31 | sseq12d | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( [,] ` B ) C_ ( [,] ` A ) <-> ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) ) ) |
| 36 | 30 | fveq2d | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( (,) ` A ) = ( (,) ` ( a F c ) ) ) |
| 37 | 32 | fveq2d | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( (,) ` B ) = ( (,) ` ( b F d ) ) ) |
| 38 | 36 37 | ineq12d | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( (,) ` A ) i^i ( (,) ` B ) ) = ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) ) |
| 39 | 38 | eqeq1d | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) <-> ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) |
| 40 | 34 35 39 | 3orbi123d | |- ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) <-> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) ) |
| 41 | 29 40 | syl5ibrcom | |- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) -> ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) ) |
| 42 | 41 | rexlimdvva | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( E. c e. NN0 E. d e. NN0 ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) ) |
| 43 | 10 42 | biimtrrid | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( E. c e. NN0 A = ( a F c ) /\ E. d e. NN0 B = ( b F d ) ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) ) |
| 44 | 43 | rexlimivv | |- ( E. a e. ZZ E. b e. ZZ ( E. c e. NN0 A = ( a F c ) /\ E. d e. NN0 B = ( b F d ) ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) |
| 45 | 9 44 | sylbi | |- ( ( A e. ran F /\ B e. ran F ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) |