This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998) Extract breng as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bren | |- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv | |- ( A ~~ B -> ( A e. _V /\ B e. _V ) ) |
|
| 2 | f1ofn | |- ( f : A -1-1-onto-> B -> f Fn A ) |
|
| 3 | fndm | |- ( f Fn A -> dom f = A ) |
|
| 4 | vex | |- f e. _V |
|
| 5 | 4 | dmex | |- dom f e. _V |
| 6 | 3 5 | eqeltrrdi | |- ( f Fn A -> A e. _V ) |
| 7 | 2 6 | syl | |- ( f : A -1-1-onto-> B -> A e. _V ) |
| 8 | f1ofo | |- ( f : A -1-1-onto-> B -> f : A -onto-> B ) |
|
| 9 | forn | |- ( f : A -onto-> B -> ran f = B ) |
|
| 10 | 8 9 | syl | |- ( f : A -1-1-onto-> B -> ran f = B ) |
| 11 | 4 | rnex | |- ran f e. _V |
| 12 | 10 11 | eqeltrrdi | |- ( f : A -1-1-onto-> B -> B e. _V ) |
| 13 | 7 12 | jca | |- ( f : A -1-1-onto-> B -> ( A e. _V /\ B e. _V ) ) |
| 14 | 13 | exlimiv | |- ( E. f f : A -1-1-onto-> B -> ( A e. _V /\ B e. _V ) ) |
| 15 | breng | |- ( ( A e. _V /\ B e. _V ) -> ( A ~~ B <-> E. f f : A -1-1-onto-> B ) ) |
|
| 16 | 1 14 15 | pm5.21nii | |- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |