This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of terms in the infinite sequence defining a power series for fixed X . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| radcnv.a | |- ( ph -> A : NN0 --> CC ) |
||
| psergf.x | |- ( ph -> X e. CC ) |
||
| Assertion | psergf | |- ( ph -> ( G ` X ) : NN0 --> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | radcnv.a | |- ( ph -> A : NN0 --> CC ) |
|
| 3 | psergf.x | |- ( ph -> X e. CC ) |
|
| 4 | 1 | pserval | |- ( X e. CC -> ( G ` X ) = ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) ) |
| 5 | 4 | adantl | |- ( ( A : NN0 --> CC /\ X e. CC ) -> ( G ` X ) = ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) ) |
| 6 | ffvelcdm | |- ( ( A : NN0 --> CC /\ m e. NN0 ) -> ( A ` m ) e. CC ) |
|
| 7 | 6 | adantlr | |- ( ( ( A : NN0 --> CC /\ X e. CC ) /\ m e. NN0 ) -> ( A ` m ) e. CC ) |
| 8 | expcl | |- ( ( X e. CC /\ m e. NN0 ) -> ( X ^ m ) e. CC ) |
|
| 9 | 8 | adantll | |- ( ( ( A : NN0 --> CC /\ X e. CC ) /\ m e. NN0 ) -> ( X ^ m ) e. CC ) |
| 10 | 7 9 | mulcld | |- ( ( ( A : NN0 --> CC /\ X e. CC ) /\ m e. NN0 ) -> ( ( A ` m ) x. ( X ^ m ) ) e. CC ) |
| 11 | 5 10 | fmpt3d | |- ( ( A : NN0 --> CC /\ X e. CC ) -> ( G ` X ) : NN0 --> CC ) |
| 12 | 2 3 11 | syl2anc | |- ( ph -> ( G ` X ) : NN0 --> CC ) |