This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a nonzero number is a positive real. (Contributed by FL, 27-Dec-2007) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absrpcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absval | |- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 3 | simpl | |- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
|
| 4 | 3 | cjmulrcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( A x. ( * ` A ) ) e. RR ) |
| 5 | 3 | cjmulge0d | |- ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( A x. ( * ` A ) ) ) |
| 6 | 3 | cjcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) e. CC ) |
| 7 | simpr | |- ( ( A e. CC /\ A =/= 0 ) -> A =/= 0 ) |
|
| 8 | 3 7 | cjne0d | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) =/= 0 ) |
| 9 | 3 6 7 8 | mulne0d | |- ( ( A e. CC /\ A =/= 0 ) -> ( A x. ( * ` A ) ) =/= 0 ) |
| 10 | 4 5 9 | ne0gt0d | |- ( ( A e. CC /\ A =/= 0 ) -> 0 < ( A x. ( * ` A ) ) ) |
| 11 | 4 10 | elrpd | |- ( ( A e. CC /\ A =/= 0 ) -> ( A x. ( * ` A ) ) e. RR+ ) |
| 12 | rpsqrtcl | |- ( ( A x. ( * ` A ) ) e. RR+ -> ( sqrt ` ( A x. ( * ` A ) ) ) e. RR+ ) |
|
| 13 | 11 12 | syl | |- ( ( A e. CC /\ A =/= 0 ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. RR+ ) |
| 14 | 2 13 | eqeltrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |