This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is within the open disk of radius R centered at zero, then the infinite series converges absolutely at X , and also converges when the series is multiplied by n . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| radcnv.a | |- ( ph -> A : NN0 --> CC ) |
||
| radcnv.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| radcnvlt.x | |- ( ph -> X e. CC ) |
||
| radcnvlt.a | |- ( ph -> ( abs ` X ) < R ) |
||
| radcnvlt1.h | |- H = ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) |
||
| Assertion | radcnvlt1 | |- ( ph -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | radcnv.a | |- ( ph -> A : NN0 --> CC ) |
|
| 3 | radcnv.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 4 | radcnvlt.x | |- ( ph -> X e. CC ) |
|
| 5 | radcnvlt.a | |- ( ph -> ( abs ` X ) < R ) |
|
| 6 | radcnvlt1.h | |- H = ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) |
|
| 7 | ressxr | |- RR C_ RR* |
|
| 8 | 4 | abscld | |- ( ph -> ( abs ` X ) e. RR ) |
| 9 | 7 8 | sselid | |- ( ph -> ( abs ` X ) e. RR* ) |
| 10 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 11 | 1 2 3 | radcnvcl | |- ( ph -> R e. ( 0 [,] +oo ) ) |
| 12 | 10 11 | sselid | |- ( ph -> R e. RR* ) |
| 13 | xrltnle | |- ( ( ( abs ` X ) e. RR* /\ R e. RR* ) -> ( ( abs ` X ) < R <-> -. R <_ ( abs ` X ) ) ) |
|
| 14 | 9 12 13 | syl2anc | |- ( ph -> ( ( abs ` X ) < R <-> -. R <_ ( abs ` X ) ) ) |
| 15 | 5 14 | mpbid | |- ( ph -> -. R <_ ( abs ` X ) ) |
| 16 | 3 | breq1i | |- ( R <_ ( abs ` X ) <-> sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) <_ ( abs ` X ) ) |
| 17 | ssrab2 | |- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR |
|
| 18 | 17 7 | sstri | |- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* |
| 19 | supxrleub | |- ( ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* /\ ( abs ` X ) e. RR* ) -> ( sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) <_ ( abs ` X ) <-> A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) ) ) |
|
| 20 | 18 9 19 | sylancr | |- ( ph -> ( sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) <_ ( abs ` X ) <-> A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) ) ) |
| 21 | 16 20 | bitrid | |- ( ph -> ( R <_ ( abs ` X ) <-> A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) ) ) |
| 22 | fveq2 | |- ( r = s -> ( G ` r ) = ( G ` s ) ) |
|
| 23 | 22 | seqeq3d | |- ( r = s -> seq 0 ( + , ( G ` r ) ) = seq 0 ( + , ( G ` s ) ) ) |
| 24 | 23 | eleq1d | |- ( r = s -> ( seq 0 ( + , ( G ` r ) ) e. dom ~~> <-> seq 0 ( + , ( G ` s ) ) e. dom ~~> ) ) |
| 25 | 24 | ralrab | |- ( A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) <-> A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) ) |
| 26 | 21 25 | bitrdi | |- ( ph -> ( R <_ ( abs ` X ) <-> A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) ) ) |
| 27 | 15 26 | mtbid | |- ( ph -> -. A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) ) |
| 28 | rexanali | |- ( E. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) <-> -. A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) ) |
|
| 29 | 27 28 | sylibr | |- ( ph -> E. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) ) |
| 30 | ltnle | |- ( ( ( abs ` X ) e. RR /\ s e. RR ) -> ( ( abs ` X ) < s <-> -. s <_ ( abs ` X ) ) ) |
|
| 31 | 8 30 | sylan | |- ( ( ph /\ s e. RR ) -> ( ( abs ` X ) < s <-> -. s <_ ( abs ` X ) ) ) |
| 32 | 31 | adantr | |- ( ( ( ph /\ s e. RR ) /\ seq 0 ( + , ( G ` s ) ) e. dom ~~> ) -> ( ( abs ` X ) < s <-> -. s <_ ( abs ` X ) ) ) |
| 33 | 2 | ad2antrr | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> A : NN0 --> CC ) |
| 34 | 4 | ad2antrr | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> X e. CC ) |
| 35 | simplr | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> s e. RR ) |
|
| 36 | 35 | recnd | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> s e. CC ) |
| 37 | simprr | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` X ) < s ) |
|
| 38 | 0red | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 e. RR ) |
|
| 39 | 34 | abscld | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` X ) e. RR ) |
| 40 | 34 | absge0d | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 <_ ( abs ` X ) ) |
| 41 | 38 39 35 40 37 | lelttrd | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 < s ) |
| 42 | 38 35 41 | ltled | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 <_ s ) |
| 43 | 35 42 | absidd | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` s ) = s ) |
| 44 | 37 43 | breqtrrd | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` X ) < ( abs ` s ) ) |
| 45 | simprl | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> seq 0 ( + , ( G ` s ) ) e. dom ~~> ) |
|
| 46 | 1 33 34 36 44 45 6 | radcnvlem1 | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> seq 0 ( + , H ) e. dom ~~> ) |
| 47 | 1 33 34 36 44 45 | radcnvlem2 | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) |
| 48 | 46 47 | jca | |- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) |
| 49 | 48 | expr | |- ( ( ( ph /\ s e. RR ) /\ seq 0 ( + , ( G ` s ) ) e. dom ~~> ) -> ( ( abs ` X ) < s -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) ) |
| 50 | 32 49 | sylbird | |- ( ( ( ph /\ s e. RR ) /\ seq 0 ( + , ( G ` s ) ) e. dom ~~> ) -> ( -. s <_ ( abs ` X ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) ) |
| 51 | 50 | expimpd | |- ( ( ph /\ s e. RR ) -> ( ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) ) |
| 52 | 51 | rexlimdva | |- ( ph -> ( E. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) ) |
| 53 | 29 52 | mpd | |- ( ph -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) |