This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 10-Oct-2004) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltdiv1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A / C ) < ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> A e. RR ) |
|
| 2 | simp2 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> B e. RR ) |
|
| 3 | simp3l | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C e. RR ) |
|
| 4 | simp3r | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> 0 < C ) |
|
| 5 | 4 | gt0ne0d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C =/= 0 ) |
| 6 | 3 5 | rereccld | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( 1 / C ) e. RR ) |
| 7 | recgt0 | |- ( ( C e. RR /\ 0 < C ) -> 0 < ( 1 / C ) ) |
|
| 8 | 7 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> 0 < ( 1 / C ) ) |
| 9 | ltmul1 | |- ( ( A e. RR /\ B e. RR /\ ( ( 1 / C ) e. RR /\ 0 < ( 1 / C ) ) ) -> ( A < B <-> ( A x. ( 1 / C ) ) < ( B x. ( 1 / C ) ) ) ) |
|
| 10 | 1 2 6 8 9 | syl112anc | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A x. ( 1 / C ) ) < ( B x. ( 1 / C ) ) ) ) |
| 11 | 1 | recnd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> A e. CC ) |
| 12 | 3 | recnd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C e. CC ) |
| 13 | 11 12 5 | divrecd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A / C ) = ( A x. ( 1 / C ) ) ) |
| 14 | 2 | recnd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> B e. CC ) |
| 15 | 14 12 5 | divrecd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
| 16 | 13 15 | breq12d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) < ( B / C ) <-> ( A x. ( 1 / C ) ) < ( B x. ( 1 / C ) ) ) ) |
| 17 | 10 16 | bitr4d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A / C ) < ( B / C ) ) ) |