This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lt2mul2div | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A x. B ) < ( C x. D ) <-> ( A / D ) < ( C / B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( C e. RR -> C e. CC ) |
|
| 2 | recn | |- ( D e. RR -> D e. CC ) |
|
| 3 | mulcom | |- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) = ( D x. C ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( C e. RR /\ D e. RR ) -> ( C x. D ) = ( D x. C ) ) |
| 5 | 4 | oveq1d | |- ( ( C e. RR /\ D e. RR ) -> ( ( C x. D ) / B ) = ( ( D x. C ) / B ) ) |
| 6 | 5 | adantl | |- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( C x. D ) / B ) = ( ( D x. C ) / B ) ) |
| 7 | 2 | ad2antll | |- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> D e. CC ) |
| 8 | 1 | ad2antrl | |- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) |
| 9 | recn | |- ( B e. RR -> B e. CC ) |
|
| 10 | 9 | adantr | |- ( ( B e. RR /\ 0 < B ) -> B e. CC ) |
| 11 | gt0ne0 | |- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
|
| 12 | 10 11 | jca | |- ( ( B e. RR /\ 0 < B ) -> ( B e. CC /\ B =/= 0 ) ) |
| 13 | 12 | adantr | |- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> ( B e. CC /\ B =/= 0 ) ) |
| 14 | divass | |- ( ( D e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( D x. C ) / B ) = ( D x. ( C / B ) ) ) |
|
| 15 | 7 8 13 14 | syl3anc | |- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D x. C ) / B ) = ( D x. ( C / B ) ) ) |
| 16 | 6 15 | eqtrd | |- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( C x. D ) / B ) = ( D x. ( C / B ) ) ) |
| 17 | 16 | adantrrr | |- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( C x. D ) / B ) = ( D x. ( C / B ) ) ) |
| 18 | 17 | adantll | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( C x. D ) / B ) = ( D x. ( C / B ) ) ) |
| 19 | 18 | breq2d | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( A < ( ( C x. D ) / B ) <-> A < ( D x. ( C / B ) ) ) ) |
| 20 | simpll | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> A e. RR ) |
|
| 21 | remulcl | |- ( ( C e. RR /\ D e. RR ) -> ( C x. D ) e. RR ) |
|
| 22 | 21 | adantrr | |- ( ( C e. RR /\ ( D e. RR /\ 0 < D ) ) -> ( C x. D ) e. RR ) |
| 23 | 22 | adantl | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( C x. D ) e. RR ) |
| 24 | simplr | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( B e. RR /\ 0 < B ) ) |
|
| 25 | ltmuldiv | |- ( ( A e. RR /\ ( C x. D ) e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( A x. B ) < ( C x. D ) <-> A < ( ( C x. D ) / B ) ) ) |
|
| 26 | 20 23 24 25 | syl3anc | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A x. B ) < ( C x. D ) <-> A < ( ( C x. D ) / B ) ) ) |
| 27 | simpl | |- ( ( B e. RR /\ 0 < B ) -> B e. RR ) |
|
| 28 | 27 11 | jca | |- ( ( B e. RR /\ 0 < B ) -> ( B e. RR /\ B =/= 0 ) ) |
| 29 | redivcl | |- ( ( C e. RR /\ B e. RR /\ B =/= 0 ) -> ( C / B ) e. RR ) |
|
| 30 | 29 | 3expb | |- ( ( C e. RR /\ ( B e. RR /\ B =/= 0 ) ) -> ( C / B ) e. RR ) |
| 31 | 28 30 | sylan2 | |- ( ( C e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( C / B ) e. RR ) |
| 32 | 31 | ancoms | |- ( ( ( B e. RR /\ 0 < B ) /\ C e. RR ) -> ( C / B ) e. RR ) |
| 33 | 32 | ad2ant2lr | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( C / B ) e. RR ) |
| 34 | simprr | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( D e. RR /\ 0 < D ) ) |
|
| 35 | ltdivmul | |- ( ( A e. RR /\ ( C / B ) e. RR /\ ( D e. RR /\ 0 < D ) ) -> ( ( A / D ) < ( C / B ) <-> A < ( D x. ( C / B ) ) ) ) |
|
| 36 | 20 33 34 35 | syl3anc | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A / D ) < ( C / B ) <-> A < ( D x. ( C / B ) ) ) ) |
| 37 | 19 26 36 | 3bitr4d | |- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A x. B ) < ( C x. D ) <-> ( A / D ) < ( C / B ) ) ) |