This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007) (Revised by Mario Carneiro, 13-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| Assertion | bl2ioo | |- ( ( A e. RR /\ B e. RR ) -> ( A ( ball ` D ) B ) = ( ( A - B ) (,) ( A + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 2 | 1 | remetdval | |- ( ( A e. RR /\ x e. RR ) -> ( A D x ) = ( abs ` ( A - x ) ) ) |
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | recn | |- ( x e. RR -> x e. CC ) |
|
| 5 | abssub | |- ( ( A e. CC /\ x e. CC ) -> ( abs ` ( A - x ) ) = ( abs ` ( x - A ) ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( A e. RR /\ x e. RR ) -> ( abs ` ( A - x ) ) = ( abs ` ( x - A ) ) ) |
| 7 | 2 6 | eqtrd | |- ( ( A e. RR /\ x e. RR ) -> ( A D x ) = ( abs ` ( x - A ) ) ) |
| 8 | 7 | breq1d | |- ( ( A e. RR /\ x e. RR ) -> ( ( A D x ) < B <-> ( abs ` ( x - A ) ) < B ) ) |
| 9 | 8 | adantlr | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( ( A D x ) < B <-> ( abs ` ( x - A ) ) < B ) ) |
| 10 | absdiflt | |- ( ( x e. RR /\ A e. RR /\ B e. RR ) -> ( ( abs ` ( x - A ) ) < B <-> ( ( A - B ) < x /\ x < ( A + B ) ) ) ) |
|
| 11 | 10 | 3expb | |- ( ( x e. RR /\ ( A e. RR /\ B e. RR ) ) -> ( ( abs ` ( x - A ) ) < B <-> ( ( A - B ) < x /\ x < ( A + B ) ) ) ) |
| 12 | 11 | ancoms | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( ( abs ` ( x - A ) ) < B <-> ( ( A - B ) < x /\ x < ( A + B ) ) ) ) |
| 13 | 9 12 | bitrd | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( ( A D x ) < B <-> ( ( A - B ) < x /\ x < ( A + B ) ) ) ) |
| 14 | 13 | pm5.32da | |- ( ( A e. RR /\ B e. RR ) -> ( ( x e. RR /\ ( A D x ) < B ) <-> ( x e. RR /\ ( ( A - B ) < x /\ x < ( A + B ) ) ) ) ) |
| 15 | 3anass | |- ( ( x e. RR /\ ( A - B ) < x /\ x < ( A + B ) ) <-> ( x e. RR /\ ( ( A - B ) < x /\ x < ( A + B ) ) ) ) |
|
| 16 | 14 15 | bitr4di | |- ( ( A e. RR /\ B e. RR ) -> ( ( x e. RR /\ ( A D x ) < B ) <-> ( x e. RR /\ ( A - B ) < x /\ x < ( A + B ) ) ) ) |
| 17 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 18 | 1 | rexmet | |- D e. ( *Met ` RR ) |
| 19 | elbl | |- ( ( D e. ( *Met ` RR ) /\ A e. RR /\ B e. RR* ) -> ( x e. ( A ( ball ` D ) B ) <-> ( x e. RR /\ ( A D x ) < B ) ) ) |
|
| 20 | 18 19 | mp3an1 | |- ( ( A e. RR /\ B e. RR* ) -> ( x e. ( A ( ball ` D ) B ) <-> ( x e. RR /\ ( A D x ) < B ) ) ) |
| 21 | 17 20 | sylan2 | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A ( ball ` D ) B ) <-> ( x e. RR /\ ( A D x ) < B ) ) ) |
| 22 | resubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
|
| 23 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 24 | rexr | |- ( ( A - B ) e. RR -> ( A - B ) e. RR* ) |
|
| 25 | rexr | |- ( ( A + B ) e. RR -> ( A + B ) e. RR* ) |
|
| 26 | elioo2 | |- ( ( ( A - B ) e. RR* /\ ( A + B ) e. RR* ) -> ( x e. ( ( A - B ) (,) ( A + B ) ) <-> ( x e. RR /\ ( A - B ) < x /\ x < ( A + B ) ) ) ) |
|
| 27 | 24 25 26 | syl2an | |- ( ( ( A - B ) e. RR /\ ( A + B ) e. RR ) -> ( x e. ( ( A - B ) (,) ( A + B ) ) <-> ( x e. RR /\ ( A - B ) < x /\ x < ( A + B ) ) ) ) |
| 28 | 22 23 27 | syl2anc | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( ( A - B ) (,) ( A + B ) ) <-> ( x e. RR /\ ( A - B ) < x /\ x < ( A + B ) ) ) ) |
| 29 | 16 21 28 | 3bitr4d | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A ( ball ` D ) B ) <-> x e. ( ( A - B ) (,) ( A + B ) ) ) ) |
| 30 | 29 | eqrdv | |- ( ( A e. RR /\ B e. RR ) -> ( A ( ball ` D ) B ) = ( ( A - B ) (,) ( A + B ) ) ) |