This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak version of dvcnvre , valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnv.j | |- J = ( TopOpen ` CCfld ) |
|
| dvcnv.k | |- K = ( J |`t S ) |
||
| dvcnv.s | |- ( ph -> S e. { RR , CC } ) |
||
| dvcnv.y | |- ( ph -> Y e. K ) |
||
| dvcnv.f | |- ( ph -> F : X -1-1-onto-> Y ) |
||
| dvcnv.i | |- ( ph -> `' F e. ( Y -cn-> X ) ) |
||
| dvcnv.d | |- ( ph -> dom ( S _D F ) = X ) |
||
| dvcnv.z | |- ( ph -> -. 0 e. ran ( S _D F ) ) |
||
| Assertion | dvcnv | |- ( ph -> ( S _D `' F ) = ( x e. Y |-> ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnv.j | |- J = ( TopOpen ` CCfld ) |
|
| 2 | dvcnv.k | |- K = ( J |`t S ) |
|
| 3 | dvcnv.s | |- ( ph -> S e. { RR , CC } ) |
|
| 4 | dvcnv.y | |- ( ph -> Y e. K ) |
|
| 5 | dvcnv.f | |- ( ph -> F : X -1-1-onto-> Y ) |
|
| 6 | dvcnv.i | |- ( ph -> `' F e. ( Y -cn-> X ) ) |
|
| 7 | dvcnv.d | |- ( ph -> dom ( S _D F ) = X ) |
|
| 8 | dvcnv.z | |- ( ph -> -. 0 e. ran ( S _D F ) ) |
|
| 9 | dvfg | |- ( S e. { RR , CC } -> ( S _D `' F ) : dom ( S _D `' F ) --> CC ) |
|
| 10 | 3 9 | syl | |- ( ph -> ( S _D `' F ) : dom ( S _D `' F ) --> CC ) |
| 11 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 12 | 3 11 | syl | |- ( ph -> S C_ CC ) |
| 13 | f1ocnv | |- ( F : X -1-1-onto-> Y -> `' F : Y -1-1-onto-> X ) |
|
| 14 | f1of | |- ( `' F : Y -1-1-onto-> X -> `' F : Y --> X ) |
|
| 15 | 5 13 14 | 3syl | |- ( ph -> `' F : Y --> X ) |
| 16 | dvbsss | |- dom ( S _D F ) C_ S |
|
| 17 | 7 16 | eqsstrrdi | |- ( ph -> X C_ S ) |
| 18 | 17 12 | sstrd | |- ( ph -> X C_ CC ) |
| 19 | 15 18 | fssd | |- ( ph -> `' F : Y --> CC ) |
| 20 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 21 | resttopon | |- ( ( J e. ( TopOn ` CC ) /\ S C_ CC ) -> ( J |`t S ) e. ( TopOn ` S ) ) |
|
| 22 | 20 12 21 | sylancr | |- ( ph -> ( J |`t S ) e. ( TopOn ` S ) ) |
| 23 | 2 22 | eqeltrid | |- ( ph -> K e. ( TopOn ` S ) ) |
| 24 | toponss | |- ( ( K e. ( TopOn ` S ) /\ Y e. K ) -> Y C_ S ) |
|
| 25 | 23 4 24 | syl2anc | |- ( ph -> Y C_ S ) |
| 26 | 12 19 25 | dvbss | |- ( ph -> dom ( S _D `' F ) C_ Y ) |
| 27 | f1ocnvfv2 | |- ( ( F : X -1-1-onto-> Y /\ x e. Y ) -> ( F ` ( `' F ` x ) ) = x ) |
|
| 28 | 5 27 | sylan | |- ( ( ph /\ x e. Y ) -> ( F ` ( `' F ` x ) ) = x ) |
| 29 | 3 | adantr | |- ( ( ph /\ x e. Y ) -> S e. { RR , CC } ) |
| 30 | 4 | adantr | |- ( ( ph /\ x e. Y ) -> Y e. K ) |
| 31 | 5 | adantr | |- ( ( ph /\ x e. Y ) -> F : X -1-1-onto-> Y ) |
| 32 | 6 | adantr | |- ( ( ph /\ x e. Y ) -> `' F e. ( Y -cn-> X ) ) |
| 33 | 7 | adantr | |- ( ( ph /\ x e. Y ) -> dom ( S _D F ) = X ) |
| 34 | 8 | adantr | |- ( ( ph /\ x e. Y ) -> -. 0 e. ran ( S _D F ) ) |
| 35 | 15 | ffvelcdmda | |- ( ( ph /\ x e. Y ) -> ( `' F ` x ) e. X ) |
| 36 | 1 2 29 30 31 32 33 34 35 | dvcnvlem | |- ( ( ph /\ x e. Y ) -> ( F ` ( `' F ` x ) ) ( S _D `' F ) ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) |
| 37 | 28 36 | eqbrtrrd | |- ( ( ph /\ x e. Y ) -> x ( S _D `' F ) ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) |
| 38 | reldv | |- Rel ( S _D `' F ) |
|
| 39 | 38 | releldmi | |- ( x ( S _D `' F ) ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) -> x e. dom ( S _D `' F ) ) |
| 40 | 37 39 | syl | |- ( ( ph /\ x e. Y ) -> x e. dom ( S _D `' F ) ) |
| 41 | 26 40 | eqelssd | |- ( ph -> dom ( S _D `' F ) = Y ) |
| 42 | 41 | feq2d | |- ( ph -> ( ( S _D `' F ) : dom ( S _D `' F ) --> CC <-> ( S _D `' F ) : Y --> CC ) ) |
| 43 | 10 42 | mpbid | |- ( ph -> ( S _D `' F ) : Y --> CC ) |
| 44 | 43 | feqmptd | |- ( ph -> ( S _D `' F ) = ( x e. Y |-> ( ( S _D `' F ) ` x ) ) ) |
| 45 | 10 | adantr | |- ( ( ph /\ x e. Y ) -> ( S _D `' F ) : dom ( S _D `' F ) --> CC ) |
| 46 | 45 | ffund | |- ( ( ph /\ x e. Y ) -> Fun ( S _D `' F ) ) |
| 47 | funbrfv | |- ( Fun ( S _D `' F ) -> ( x ( S _D `' F ) ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) -> ( ( S _D `' F ) ` x ) = ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) ) |
|
| 48 | 46 37 47 | sylc | |- ( ( ph /\ x e. Y ) -> ( ( S _D `' F ) ` x ) = ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) |
| 49 | 48 | mpteq2dva | |- ( ph -> ( x e. Y |-> ( ( S _D `' F ) ` x ) ) = ( x e. Y |-> ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) ) |
| 50 | 44 49 | eqtrd | |- ( ph -> ( S _D `' F ) = ( x e. Y |-> ( 1 / ( ( S _D F ) ` ( `' F ` x ) ) ) ) ) |