This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcl.s | |- ( ph -> S C_ CC ) |
|
| dvcl.f | |- ( ph -> F : A --> CC ) |
||
| dvcl.a | |- ( ph -> A C_ S ) |
||
| dvbssntr.j | |- J = ( K |`t S ) |
||
| dvbssntr.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | dvbssntr | |- ( ph -> dom ( S _D F ) C_ ( ( int ` J ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcl.s | |- ( ph -> S C_ CC ) |
|
| 2 | dvcl.f | |- ( ph -> F : A --> CC ) |
|
| 3 | dvcl.a | |- ( ph -> A C_ S ) |
|
| 4 | dvbssntr.j | |- J = ( K |`t S ) |
|
| 5 | dvbssntr.k | |- K = ( TopOpen ` CCfld ) |
|
| 6 | 4 5 | dvfval | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( ( S _D F ) = U_ x e. ( ( int ` J ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` J ) ` A ) X. CC ) ) ) |
| 7 | 1 2 3 6 | syl3anc | |- ( ph -> ( ( S _D F ) = U_ x e. ( ( int ` J ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` J ) ` A ) X. CC ) ) ) |
| 8 | dmss | |- ( ( S _D F ) C_ ( ( ( int ` J ) ` A ) X. CC ) -> dom ( S _D F ) C_ dom ( ( ( int ` J ) ` A ) X. CC ) ) |
|
| 9 | 7 8 | simpl2im | |- ( ph -> dom ( S _D F ) C_ dom ( ( ( int ` J ) ` A ) X. CC ) ) |
| 10 | dmxpss | |- dom ( ( ( int ` J ) ` A ) X. CC ) C_ ( ( int ` J ) ` A ) |
|
| 11 | 9 10 | sstrdi | |- ( ph -> dom ( S _D F ) C_ ( ( int ` J ) ` A ) ) |