This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: As shown in diagval , the currying of the first projection is the diagonal functor. On the other hand, the currying of the second projection is x e. C |-> ( y e. D |-> y ) , which is a constant functor of the identity functor at D . (Contributed by Mario Carneiro, 15-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curf2ndf.q | |- Q = ( D FuncCat D ) |
|
| curf2ndf.c | |- ( ph -> C e. Cat ) |
||
| curf2ndf.d | |- ( ph -> D e. Cat ) |
||
| Assertion | curf2ndf | |- ( ph -> ( <. C , D >. curryF ( C 2ndF D ) ) = ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curf2ndf.q | |- Q = ( D FuncCat D ) |
|
| 2 | curf2ndf.c | |- ( ph -> C e. Cat ) |
|
| 3 | curf2ndf.d | |- ( ph -> D e. Cat ) |
|
| 4 | df-ov | |- ( x ( 1st ` ( C 2ndF D ) ) y ) = ( ( 1st ` ( C 2ndF D ) ) ` <. x , y >. ) |
|
| 5 | eqid | |- ( C Xc. D ) = ( C Xc. D ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 8 | 5 6 7 | xpcbas | |- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` ( C Xc. D ) ) |
| 9 | eqid | |- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
|
| 10 | 2 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> C e. Cat ) |
| 11 | 3 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> D e. Cat ) |
| 12 | eqid | |- ( C 2ndF D ) = ( C 2ndF D ) |
|
| 13 | opelxpi | |- ( ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 14 | 13 | adantll | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 15 | 5 8 9 10 11 12 14 | 2ndf1 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( C 2ndF D ) ) ` <. x , y >. ) = ( 2nd ` <. x , y >. ) ) |
| 16 | vex | |- x e. _V |
|
| 17 | vex | |- y e. _V |
|
| 18 | 16 17 | op2nd | |- ( 2nd ` <. x , y >. ) = y |
| 19 | 15 18 | eqtrdi | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( C 2ndF D ) ) ` <. x , y >. ) = y ) |
| 20 | 4 19 | eqtrid | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( x ( 1st ` ( C 2ndF D ) ) y ) = y ) |
| 21 | 20 | mpteq2dva | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( x ( 1st ` ( C 2ndF D ) ) y ) ) = ( y e. ( Base ` D ) |-> y ) ) |
| 22 | mptresid | |- ( _I |` ( Base ` D ) ) = ( y e. ( Base ` D ) |-> y ) |
|
| 23 | 21 22 | eqtr4di | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( x ( 1st ` ( C 2ndF D ) ) y ) ) = ( _I |` ( Base ` D ) ) ) |
| 24 | df-ov | |- ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) = ( ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) ` <. ( ( Id ` C ) ` x ) , f >. ) |
|
| 25 | 10 | ad2antrr | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> C e. Cat ) |
| 26 | 11 | ad2antrr | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> D e. Cat ) |
| 27 | 14 | ad2antrr | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 28 | simp-4r | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> x e. ( Base ` C ) ) |
|
| 29 | simplr | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> z e. ( Base ` D ) ) |
|
| 30 | 28 29 | opelxpd | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> <. x , z >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 31 | 5 8 9 25 26 12 27 30 | 2ndf2 | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) = ( 2nd |` ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) ) |
| 32 | 31 | fveq1d | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) ` <. ( ( Id ` C ) ` x ) , f >. ) = ( ( 2nd |` ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) ` <. ( ( Id ` C ) ` x ) , f >. ) ) |
| 33 | 24 32 | eqtrid | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) = ( ( 2nd |` ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) ` <. ( ( Id ` C ) ` x ) , f >. ) ) |
| 34 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 35 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 36 | 2 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> C e. Cat ) |
| 37 | simpr | |- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 38 | 6 34 35 36 37 | catidcl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 39 | 38 | ad3antrrr | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 40 | simpr | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> f e. ( y ( Hom ` D ) z ) ) |
|
| 41 | 39 40 | opelxpd | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> <. ( ( Id ` C ) ` x ) , f >. e. ( ( x ( Hom ` C ) x ) X. ( y ( Hom ` D ) z ) ) ) |
| 42 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 43 | simpllr | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> y e. ( Base ` D ) ) |
|
| 44 | 5 6 7 34 42 28 43 28 29 9 | xpchom2 | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) = ( ( x ( Hom ` C ) x ) X. ( y ( Hom ` D ) z ) ) ) |
| 45 | 41 44 | eleqtrrd | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> <. ( ( Id ` C ) ` x ) , f >. e. ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) |
| 46 | 45 | fvresd | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( 2nd |` ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) ` <. ( ( Id ` C ) ` x ) , f >. ) = ( 2nd ` <. ( ( Id ` C ) ` x ) , f >. ) ) |
| 47 | fvex | |- ( ( Id ` C ) ` x ) e. _V |
|
| 48 | vex | |- f e. _V |
|
| 49 | 47 48 | op2nd | |- ( 2nd ` <. ( ( Id ` C ) ` x ) , f >. ) = f |
| 50 | 46 49 | eqtrdi | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( 2nd |` ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) ` <. ( ( Id ` C ) ` x ) , f >. ) = f ) |
| 51 | 33 50 | eqtrd | |- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) = f ) |
| 52 | 51 | mpteq2dva | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) -> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) = ( f e. ( y ( Hom ` D ) z ) |-> f ) ) |
| 53 | mptresid | |- ( _I |` ( y ( Hom ` D ) z ) ) = ( f e. ( y ( Hom ` D ) z ) |-> f ) |
|
| 54 | 52 53 | eqtr4di | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) -> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) = ( _I |` ( y ( Hom ` D ) z ) ) ) |
| 55 | 54 | 3impa | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) /\ z e. ( Base ` D ) ) -> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) = ( _I |` ( y ( Hom ` D ) z ) ) ) |
| 56 | 55 | mpoeq3dva | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( _I |` ( y ( Hom ` D ) z ) ) ) ) |
| 57 | fveq2 | |- ( u = <. y , z >. -> ( ( Hom ` D ) ` u ) = ( ( Hom ` D ) ` <. y , z >. ) ) |
|
| 58 | df-ov | |- ( y ( Hom ` D ) z ) = ( ( Hom ` D ) ` <. y , z >. ) |
|
| 59 | 57 58 | eqtr4di | |- ( u = <. y , z >. -> ( ( Hom ` D ) ` u ) = ( y ( Hom ` D ) z ) ) |
| 60 | 59 | reseq2d | |- ( u = <. y , z >. -> ( _I |` ( ( Hom ` D ) ` u ) ) = ( _I |` ( y ( Hom ` D ) z ) ) ) |
| 61 | 60 | mpompt | |- ( u e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( _I |` ( ( Hom ` D ) ` u ) ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( _I |` ( y ( Hom ` D ) z ) ) ) |
| 62 | 56 61 | eqtr4di | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) ) = ( u e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( _I |` ( ( Hom ` D ) ` u ) ) ) ) |
| 63 | 23 62 | opeq12d | |- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` ( C 2ndF D ) ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) ) >. = <. ( _I |` ( Base ` D ) ) , ( u e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( _I |` ( ( Hom ` D ) ` u ) ) ) >. ) |
| 64 | eqid | |- ( <. C , D >. curryF ( C 2ndF D ) ) = ( <. C , D >. curryF ( C 2ndF D ) ) |
|
| 65 | 3 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 66 | 5 2 3 12 | 2ndfcl | |- ( ph -> ( C 2ndF D ) e. ( ( C Xc. D ) Func D ) ) |
| 67 | 66 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( C 2ndF D ) e. ( ( C Xc. D ) Func D ) ) |
| 68 | eqid | |- ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) = ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) |
|
| 69 | 64 6 36 65 67 7 37 68 42 35 | curf1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) = <. ( y e. ( Base ` D ) |-> ( x ( 1st ` ( C 2ndF D ) ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) ) >. ) |
| 70 | eqid | |- ( idFunc ` D ) = ( idFunc ` D ) |
|
| 71 | 70 7 65 42 | idfuval | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( idFunc ` D ) = <. ( _I |` ( Base ` D ) ) , ( u e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( _I |` ( ( Hom ` D ) ` u ) ) ) >. ) |
| 72 | 63 69 71 | 3eqtr4d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) = ( idFunc ` D ) ) |
| 73 | eqid | |- ( Q DiagFunc C ) = ( Q DiagFunc C ) |
|
| 74 | 1 3 3 | fuccat | |- ( ph -> Q e. Cat ) |
| 75 | 74 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> Q e. Cat ) |
| 76 | 1 | fucbas | |- ( D Func D ) = ( Base ` Q ) |
| 77 | 70 | idfucl | |- ( D e. Cat -> ( idFunc ` D ) e. ( D Func D ) ) |
| 78 | 3 77 | syl | |- ( ph -> ( idFunc ` D ) e. ( D Func D ) ) |
| 79 | 78 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( idFunc ` D ) e. ( D Func D ) ) |
| 80 | eqid | |- ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) = ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) |
|
| 81 | 73 75 36 76 79 80 6 37 | diag11 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` x ) = ( idFunc ` D ) ) |
| 82 | 72 81 | eqtr4d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) = ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` x ) ) |
| 83 | 82 | mpteq2dva | |- ( ph -> ( x e. ( Base ` C ) |-> ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) ) = ( x e. ( Base ` C ) |-> ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` x ) ) ) |
| 84 | relfunc | |- Rel ( C Func Q ) |
|
| 85 | 64 1 2 3 66 | curfcl | |- ( ph -> ( <. C , D >. curryF ( C 2ndF D ) ) e. ( C Func Q ) ) |
| 86 | 1st2ndbr | |- ( ( Rel ( C Func Q ) /\ ( <. C , D >. curryF ( C 2ndF D ) ) e. ( C Func Q ) ) -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ( C Func Q ) ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ) |
|
| 87 | 84 85 86 | sylancr | |- ( ph -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ( C Func Q ) ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ) |
| 88 | 6 76 87 | funcf1 | |- ( ph -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) : ( Base ` C ) --> ( D Func D ) ) |
| 89 | 88 | feqmptd | |- ( ph -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) = ( x e. ( Base ` C ) |-> ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) ) ) |
| 90 | 73 74 2 76 78 80 | diag1cl | |- ( ph -> ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) e. ( C Func Q ) ) |
| 91 | 1st2ndbr | |- ( ( Rel ( C Func Q ) /\ ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) e. ( C Func Q ) ) -> ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ( C Func Q ) ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ) |
|
| 92 | 84 90 91 | sylancr | |- ( ph -> ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ( C Func Q ) ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ) |
| 93 | 6 76 92 | funcf1 | |- ( ph -> ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) : ( Base ` C ) --> ( D Func D ) ) |
| 94 | 93 | feqmptd | |- ( ph -> ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) = ( x e. ( Base ` C ) |-> ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` x ) ) ) |
| 95 | 83 89 94 | 3eqtr4d | |- ( ph -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) = ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ) |
| 96 | 3 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> D e. Cat ) |
| 97 | 70 7 96 | idfu1st | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( idFunc ` D ) ) = ( _I |` ( Base ` D ) ) ) |
| 98 | 97 | coeq2d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( Id ` D ) o. ( 1st ` ( idFunc ` D ) ) ) = ( ( Id ` D ) o. ( _I |` ( Base ` D ) ) ) ) |
| 99 | eqid | |- ( Id ` Q ) = ( Id ` Q ) |
|
| 100 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 101 | 78 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( idFunc ` D ) e. ( D Func D ) ) |
| 102 | 1 99 100 101 | fucid | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( Id ` Q ) ` ( idFunc ` D ) ) = ( ( Id ` D ) o. ( 1st ` ( idFunc ` D ) ) ) ) |
| 103 | 7 100 | cidfn | |- ( D e. Cat -> ( Id ` D ) Fn ( Base ` D ) ) |
| 104 | 96 103 | syl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( Id ` D ) Fn ( Base ` D ) ) |
| 105 | dffn2 | |- ( ( Id ` D ) Fn ( Base ` D ) <-> ( Id ` D ) : ( Base ` D ) --> _V ) |
|
| 106 | 104 105 | sylib | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( Id ` D ) : ( Base ` D ) --> _V ) |
| 107 | 106 | feqmptd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( Id ` D ) = ( z e. ( Base ` D ) |-> ( ( Id ` D ) ` z ) ) ) |
| 108 | fcoi1 | |- ( ( Id ` D ) : ( Base ` D ) --> _V -> ( ( Id ` D ) o. ( _I |` ( Base ` D ) ) ) = ( Id ` D ) ) |
|
| 109 | 106 108 | syl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( Id ` D ) o. ( _I |` ( Base ` D ) ) ) = ( Id ` D ) ) |
| 110 | 2 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> C e. Cat ) |
| 111 | 110 | adantr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> C e. Cat ) |
| 112 | 96 | adantr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> D e. Cat ) |
| 113 | simplrl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> x e. ( Base ` C ) ) |
|
| 114 | opelxpi | |- ( ( x e. ( Base ` C ) /\ z e. ( Base ` D ) ) -> <. x , z >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 115 | 113 114 | sylan | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> <. x , z >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 116 | simplrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> y e. ( Base ` C ) ) |
|
| 117 | opelxpi | |- ( ( y e. ( Base ` C ) /\ z e. ( Base ` D ) ) -> <. y , z >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 118 | 116 117 | sylan | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> <. y , z >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 119 | 5 8 9 111 112 12 115 118 | 2ndf2 | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) = ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ) |
| 120 | 119 | oveqd | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) = ( f ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ( ( Id ` D ) ` z ) ) ) |
| 121 | df-ov | |- ( f ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ( ( Id ` D ) ` z ) ) = ( ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ` <. f , ( ( Id ` D ) ` z ) >. ) |
|
| 122 | simplr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> f e. ( x ( Hom ` C ) y ) ) |
|
| 123 | simpr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> z e. ( Base ` D ) ) |
|
| 124 | 7 42 100 112 123 | catidcl | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( Id ` D ) ` z ) e. ( z ( Hom ` D ) z ) ) |
| 125 | 122 124 | opelxpd | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> <. f , ( ( Id ` D ) ` z ) >. e. ( ( x ( Hom ` C ) y ) X. ( z ( Hom ` D ) z ) ) ) |
| 126 | 113 | adantr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> x e. ( Base ` C ) ) |
| 127 | 116 | adantr | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> y e. ( Base ` C ) ) |
| 128 | 5 6 7 34 42 126 123 127 123 9 | xpchom2 | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) = ( ( x ( Hom ` C ) y ) X. ( z ( Hom ` D ) z ) ) ) |
| 129 | 125 128 | eleqtrrd | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> <. f , ( ( Id ` D ) ` z ) >. e. ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) |
| 130 | 129 | fvresd | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ` <. f , ( ( Id ` D ) ` z ) >. ) = ( 2nd ` <. f , ( ( Id ` D ) ` z ) >. ) ) |
| 131 | 121 130 | eqtrid | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( f ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ( ( Id ` D ) ` z ) ) = ( 2nd ` <. f , ( ( Id ` D ) ` z ) >. ) ) |
| 132 | fvex | |- ( ( Id ` D ) ` z ) e. _V |
|
| 133 | 48 132 | op2nd | |- ( 2nd ` <. f , ( ( Id ` D ) ` z ) >. ) = ( ( Id ` D ) ` z ) |
| 134 | 131 133 | eqtrdi | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( f ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ( ( Id ` D ) ` z ) ) = ( ( Id ` D ) ` z ) ) |
| 135 | 120 134 | eqtrd | |- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) = ( ( Id ` D ) ` z ) ) |
| 136 | 135 | mpteq2dva | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) = ( z e. ( Base ` D ) |-> ( ( Id ` D ) ` z ) ) ) |
| 137 | 107 109 136 | 3eqtr4rd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) = ( ( Id ` D ) o. ( _I |` ( Base ` D ) ) ) ) |
| 138 | 98 102 137 | 3eqtr4rd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) = ( ( Id ` Q ) ` ( idFunc ` D ) ) ) |
| 139 | 66 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( C 2ndF D ) e. ( ( C Xc. D ) Func D ) ) |
| 140 | simpr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> f e. ( x ( Hom ` C ) y ) ) |
|
| 141 | eqid | |- ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) = ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) |
|
| 142 | 64 6 110 96 139 7 34 100 113 116 140 141 | curf2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) = ( z e. ( Base ` D ) |-> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) |
| 143 | 74 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> Q e. Cat ) |
| 144 | 73 143 110 76 101 80 6 113 34 99 116 140 | diag12 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ` f ) = ( ( Id ` Q ) ` ( idFunc ` D ) ) ) |
| 145 | 138 142 144 | 3eqtr4d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) = ( ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ` f ) ) |
| 146 | 145 | mpteq2dva | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ` f ) ) ) |
| 147 | eqid | |- ( D Nat D ) = ( D Nat D ) |
|
| 148 | 1 147 | fuchom | |- ( D Nat D ) = ( Hom ` Q ) |
| 149 | 87 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ( C Func Q ) ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ) |
| 150 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 151 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 152 | 6 34 148 149 150 151 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) ( D Nat D ) ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` y ) ) ) |
| 153 | 152 | feqmptd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) ) ) |
| 154 | 92 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ( C Func Q ) ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ) |
| 155 | 6 34 148 154 150 151 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` x ) ( D Nat D ) ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` y ) ) ) |
| 156 | 155 | feqmptd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ` f ) ) ) |
| 157 | 146 153 156 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) = ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ) |
| 158 | 157 | 3impb | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) = ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ) |
| 159 | 158 | mpoeq3dva | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ) ) |
| 160 | 6 87 | funcfn2 | |- ( ph -> ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 161 | fnov | |- ( ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ) ) |
|
| 162 | 160 161 | sylib | |- ( ph -> ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ) ) |
| 163 | 6 92 | funcfn2 | |- ( ph -> ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 164 | fnov | |- ( ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ) ) |
|
| 165 | 163 164 | sylib | |- ( ph -> ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ) ) |
| 166 | 159 162 165 | 3eqtr4d | |- ( ph -> ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) = ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ) |
| 167 | 95 166 | opeq12d | |- ( ph -> <. ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) , ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) >. = <. ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) , ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) >. ) |
| 168 | 1st2nd | |- ( ( Rel ( C Func Q ) /\ ( <. C , D >. curryF ( C 2ndF D ) ) e. ( C Func Q ) ) -> ( <. C , D >. curryF ( C 2ndF D ) ) = <. ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) , ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) >. ) |
|
| 169 | 84 85 168 | sylancr | |- ( ph -> ( <. C , D >. curryF ( C 2ndF D ) ) = <. ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) , ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) >. ) |
| 170 | 1st2nd | |- ( ( Rel ( C Func Q ) /\ ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) e. ( C Func Q ) ) -> ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) = <. ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) , ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) >. ) |
|
| 171 | 84 90 170 | sylancr | |- ( ph -> ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) = <. ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) , ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) >. ) |
| 172 | 167 169 171 | 3eqtr4d | |- ( ph -> ( <. C , D >. curryF ( C 2ndF D ) ) = ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) |