This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfval.g | |- G = ( <. C , D >. curryF F ) |
|
| curfval.a | |- A = ( Base ` C ) |
||
| curfval.c | |- ( ph -> C e. Cat ) |
||
| curfval.d | |- ( ph -> D e. Cat ) |
||
| curfval.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
||
| curfval.b | |- B = ( Base ` D ) |
||
| curf1.x | |- ( ph -> X e. A ) |
||
| curf1.k | |- K = ( ( 1st ` G ) ` X ) |
||
| curf1.j | |- J = ( Hom ` D ) |
||
| curf1.1 | |- .1. = ( Id ` C ) |
||
| Assertion | curf1 | |- ( ph -> K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | |- G = ( <. C , D >. curryF F ) |
|
| 2 | curfval.a | |- A = ( Base ` C ) |
|
| 3 | curfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | curfval.d | |- ( ph -> D e. Cat ) |
|
| 5 | curfval.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
|
| 6 | curfval.b | |- B = ( Base ` D ) |
|
| 7 | curf1.x | |- ( ph -> X e. A ) |
|
| 8 | curf1.k | |- K = ( ( 1st ` G ) ` X ) |
|
| 9 | curf1.j | |- J = ( Hom ` D ) |
|
| 10 | curf1.1 | |- .1. = ( Id ` C ) |
|
| 11 | 1 2 3 4 5 6 9 10 | curf1fval | |- ( ph -> ( 1st ` G ) = ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) ) |
| 12 | simpr | |- ( ( ph /\ x = X ) -> x = X ) |
|
| 13 | 12 | oveq1d | |- ( ( ph /\ x = X ) -> ( x ( 1st ` F ) y ) = ( X ( 1st ` F ) y ) ) |
| 14 | 13 | mpteq2dv | |- ( ( ph /\ x = X ) -> ( y e. B |-> ( x ( 1st ` F ) y ) ) = ( y e. B |-> ( X ( 1st ` F ) y ) ) ) |
| 15 | simp1r | |- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> x = X ) |
|
| 16 | 15 | opeq1d | |- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> <. x , y >. = <. X , y >. ) |
| 17 | 15 | opeq1d | |- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> <. x , z >. = <. X , z >. ) |
| 18 | 16 17 | oveq12d | |- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> ( <. x , y >. ( 2nd ` F ) <. x , z >. ) = ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ) |
| 19 | 15 | fveq2d | |- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> ( .1. ` x ) = ( .1. ` X ) ) |
| 20 | eqidd | |- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> g = g ) |
|
| 21 | 18 19 20 | oveq123d | |- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) = ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) |
| 22 | 21 | mpteq2dv | |- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) = ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) |
| 23 | 22 | mpoeq3dva | |- ( ( ph /\ x = X ) -> ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) = ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) ) |
| 24 | 14 23 | opeq12d | |- ( ( ph /\ x = X ) -> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
| 25 | opex | |- <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. e. _V |
|
| 26 | 25 | a1i | |- ( ph -> <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. e. _V ) |
| 27 | 11 24 7 26 | fvmptd | |- ( ph -> ( ( 1st ` G ) ` X ) = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
| 28 | 8 27 | eqtrid | |- ( ph -> K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |