This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity functor is a functor. Example 3.20(1) of Adamek p. 30. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idfucl.i | |- I = ( idFunc ` C ) |
|
| Assertion | idfucl | |- ( C e. Cat -> I e. ( C Func C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfucl.i | |- I = ( idFunc ` C ) |
|
| 2 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 3 | id | |- ( C e. Cat -> C e. Cat ) |
|
| 4 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 5 | 1 2 3 4 | idfuval | |- ( C e. Cat -> I = <. ( _I |` ( Base ` C ) ) , ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) |
| 6 | 5 | fveq2d | |- ( C e. Cat -> ( 2nd ` I ) = ( 2nd ` <. ( _I |` ( Base ` C ) ) , ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) ) |
| 7 | fvex | |- ( Base ` C ) e. _V |
|
| 8 | resiexg | |- ( ( Base ` C ) e. _V -> ( _I |` ( Base ` C ) ) e. _V ) |
|
| 9 | 7 8 | ax-mp | |- ( _I |` ( Base ` C ) ) e. _V |
| 10 | 7 7 | xpex | |- ( ( Base ` C ) X. ( Base ` C ) ) e. _V |
| 11 | 10 | mptex | |- ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) e. _V |
| 12 | 9 11 | op2nd | |- ( 2nd ` <. ( _I |` ( Base ` C ) ) , ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) = ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) |
| 13 | 6 12 | eqtrdi | |- ( C e. Cat -> ( 2nd ` I ) = ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) ) |
| 14 | 13 | opeq2d | |- ( C e. Cat -> <. ( _I |` ( Base ` C ) ) , ( 2nd ` I ) >. = <. ( _I |` ( Base ` C ) ) , ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) |
| 15 | 5 14 | eqtr4d | |- ( C e. Cat -> I = <. ( _I |` ( Base ` C ) ) , ( 2nd ` I ) >. ) |
| 16 | f1oi | |- ( _I |` ( Base ` C ) ) : ( Base ` C ) -1-1-onto-> ( Base ` C ) |
|
| 17 | f1of | |- ( ( _I |` ( Base ` C ) ) : ( Base ` C ) -1-1-onto-> ( Base ` C ) -> ( _I |` ( Base ` C ) ) : ( Base ` C ) --> ( Base ` C ) ) |
|
| 18 | 16 17 | mp1i | |- ( C e. Cat -> ( _I |` ( Base ` C ) ) : ( Base ` C ) --> ( Base ` C ) ) |
| 19 | f1oi | |- ( _I |` ( ( Hom ` C ) ` z ) ) : ( ( Hom ` C ) ` z ) -1-1-onto-> ( ( Hom ` C ) ` z ) |
|
| 20 | f1of | |- ( ( _I |` ( ( Hom ` C ) ` z ) ) : ( ( Hom ` C ) ` z ) -1-1-onto-> ( ( Hom ` C ) ` z ) -> ( _I |` ( ( Hom ` C ) ` z ) ) : ( ( Hom ` C ) ` z ) --> ( ( Hom ` C ) ` z ) ) |
|
| 21 | 19 20 | ax-mp | |- ( _I |` ( ( Hom ` C ) ` z ) ) : ( ( Hom ` C ) ` z ) --> ( ( Hom ` C ) ` z ) |
| 22 | fvex | |- ( ( Hom ` C ) ` z ) e. _V |
|
| 23 | 22 22 | elmap | |- ( ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( Hom ` C ) ` z ) ^m ( ( Hom ` C ) ` z ) ) <-> ( _I |` ( ( Hom ` C ) ` z ) ) : ( ( Hom ` C ) ` z ) --> ( ( Hom ` C ) ` z ) ) |
| 24 | 21 23 | mpbir | |- ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( Hom ` C ) ` z ) ^m ( ( Hom ` C ) ` z ) ) |
| 25 | xp1st | |- ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 1st ` z ) e. ( Base ` C ) ) |
|
| 26 | 25 | adantl | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( 1st ` z ) e. ( Base ` C ) ) |
| 27 | fvresi | |- ( ( 1st ` z ) e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) = ( 1st ` z ) ) |
|
| 28 | 26 27 | syl | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) = ( 1st ` z ) ) |
| 29 | xp2nd | |- ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 2nd ` z ) e. ( Base ` C ) ) |
|
| 30 | 29 | adantl | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( 2nd ` z ) e. ( Base ` C ) ) |
| 31 | fvresi | |- ( ( 2nd ` z ) e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) = ( 2nd ` z ) ) |
|
| 32 | 30 31 | syl | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) = ( 2nd ` z ) ) |
| 33 | 28 32 | oveq12d | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) = ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) |
| 34 | df-ov | |- ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) = ( ( Hom ` C ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
|
| 35 | 33 34 | eqtrdi | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) = ( ( Hom ` C ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 36 | 1st2nd2 | |- ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
|
| 37 | 36 | adantl | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 38 | 37 | fveq2d | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Hom ` C ) ` z ) = ( ( Hom ` C ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 39 | 35 38 | eqtr4d | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) = ( ( Hom ` C ) ` z ) ) |
| 40 | 39 | oveq1d | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) = ( ( ( Hom ` C ) ` z ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 41 | 24 40 | eleqtrrid | |- ( ( C e. Cat /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 42 | 41 | ralrimiva | |- ( C e. Cat -> A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 43 | mptelixpg | |- ( ( ( Base ` C ) X. ( Base ` C ) ) e. _V -> ( ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) ) |
|
| 44 | 10 43 | ax-mp | |- ( ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( _I |` ( ( Hom ` C ) ` z ) ) e. ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 45 | 42 44 | sylibr | |- ( C e. Cat -> ( z e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 46 | 13 45 | eqeltrd | |- ( C e. Cat -> ( 2nd ` I ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 47 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 48 | simpl | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> C e. Cat ) |
|
| 49 | simpr | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 50 | 2 4 47 48 49 | catidcl | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 51 | fvresi | |- ( ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) -> ( ( _I |` ( x ( Hom ` C ) x ) ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` x ) ) |
|
| 52 | 50 51 | syl | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( _I |` ( x ( Hom ` C ) x ) ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` x ) ) |
| 53 | 1 2 48 4 49 49 | idfu2nd | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( x ( 2nd ` I ) x ) = ( _I |` ( x ( Hom ` C ) x ) ) ) |
| 54 | 53 | fveq1d | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` I ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( _I |` ( x ( Hom ` C ) x ) ) ` ( ( Id ` C ) ` x ) ) ) |
| 55 | fvresi | |- ( x e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` x ) = x ) |
|
| 56 | 55 | adantl | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( _I |` ( Base ` C ) ) ` x ) = x ) |
| 57 | 56 | fveq2d | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` ( ( _I |` ( Base ` C ) ) ` x ) ) = ( ( Id ` C ) ` x ) ) |
| 58 | 52 54 57 | 3eqtr4d | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` I ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` ( ( _I |` ( Base ` C ) ) ` x ) ) ) |
| 59 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 60 | 48 | ad2antrr | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> C e. Cat ) |
| 61 | 49 | ad2antrr | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> x e. ( Base ` C ) ) |
| 62 | simplrl | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> y e. ( Base ` C ) ) |
|
| 63 | simplrr | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> z e. ( Base ` C ) ) |
|
| 64 | simprl | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
|
| 65 | simprr | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> g e. ( y ( Hom ` C ) z ) ) |
|
| 66 | 2 4 59 60 61 62 63 64 65 | catcocl | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 67 | fvresi | |- ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> ( ( _I |` ( x ( Hom ` C ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( g ( <. x , y >. ( comp ` C ) z ) f ) ) |
|
| 68 | 66 67 | syl | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( _I |` ( x ( Hom ` C ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( g ( <. x , y >. ( comp ` C ) z ) f ) ) |
| 69 | 1 2 60 4 61 63 | idfu2nd | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( x ( 2nd ` I ) z ) = ( _I |` ( x ( Hom ` C ) z ) ) ) |
| 70 | 69 | fveq1d | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( _I |` ( x ( Hom ` C ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
| 71 | 61 55 | syl | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( _I |` ( Base ` C ) ) ` x ) = x ) |
| 72 | fvresi | |- ( y e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` y ) = y ) |
|
| 73 | 62 72 | syl | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( _I |` ( Base ` C ) ) ` y ) = y ) |
| 74 | 71 73 | opeq12d | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. = <. x , y >. ) |
| 75 | fvresi | |- ( z e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` z ) = z ) |
|
| 76 | 63 75 | syl | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( _I |` ( Base ` C ) ) ` z ) = z ) |
| 77 | 74 76 | oveq12d | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) = ( <. x , y >. ( comp ` C ) z ) ) |
| 78 | 1 2 60 4 62 63 65 | idfu2 | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` I ) z ) ` g ) = g ) |
| 79 | 1 2 60 4 61 62 64 | idfu2 | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` I ) y ) ` f ) = f ) |
| 80 | 77 78 79 | oveq123d | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) = ( g ( <. x , y >. ( comp ` C ) z ) f ) ) |
| 81 | 68 70 80 | 3eqtr4d | |- ( ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) ) |
| 82 | 81 | ralrimivva | |- ( ( ( C e. Cat /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) ) |
| 83 | 82 | ralrimivva | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) ) |
| 84 | 58 83 | jca | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> ( ( ( x ( 2nd ` I ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` ( ( _I |` ( Base ` C ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) ) ) |
| 85 | 84 | ralrimiva | |- ( C e. Cat -> A. x e. ( Base ` C ) ( ( ( x ( 2nd ` I ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` ( ( _I |` ( Base ` C ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) ) ) |
| 86 | 2 2 4 4 47 47 59 59 3 3 | isfunc | |- ( C e. Cat -> ( ( _I |` ( Base ` C ) ) ( C Func C ) ( 2nd ` I ) <-> ( ( _I |` ( Base ` C ) ) : ( Base ` C ) --> ( Base ` C ) /\ ( 2nd ` I ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( _I |` ( Base ` C ) ) ` ( 1st ` z ) ) ( Hom ` C ) ( ( _I |` ( Base ` C ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) /\ A. x e. ( Base ` C ) ( ( ( x ( 2nd ` I ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` C ) ` ( ( _I |` ( Base ` C ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` I ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` I ) z ) ` g ) ( <. ( ( _I |` ( Base ` C ) ) ` x ) , ( ( _I |` ( Base ` C ) ) ` y ) >. ( comp ` C ) ( ( _I |` ( Base ` C ) ) ` z ) ) ( ( x ( 2nd ` I ) y ) ` f ) ) ) ) ) ) |
| 87 | 18 46 85 86 | mpbir3and | |- ( C e. Cat -> ( _I |` ( Base ` C ) ) ( C Func C ) ( 2nd ` I ) ) |
| 88 | df-br | |- ( ( _I |` ( Base ` C ) ) ( C Func C ) ( 2nd ` I ) <-> <. ( _I |` ( Base ` C ) ) , ( 2nd ` I ) >. e. ( C Func C ) ) |
|
| 89 | 87 88 | sylib | |- ( C e. Cat -> <. ( _I |` ( Base ` C ) ) , ( 2nd ` I ) >. e. ( C Func C ) ) |
| 90 | 15 89 | eqeltrd | |- ( C e. Cat -> I e. ( C Func C ) ) |