This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant functor of X is a functor. (Contributed by Mario Carneiro, 6-Jan-2017) (Revised by Mario Carneiro, 15-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diagval.l | |- L = ( C DiagFunc D ) |
|
| diagval.c | |- ( ph -> C e. Cat ) |
||
| diagval.d | |- ( ph -> D e. Cat ) |
||
| diag11.a | |- A = ( Base ` C ) |
||
| diag11.c | |- ( ph -> X e. A ) |
||
| diag11.k | |- K = ( ( 1st ` L ) ` X ) |
||
| Assertion | diag1cl | |- ( ph -> K e. ( D Func C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diagval.l | |- L = ( C DiagFunc D ) |
|
| 2 | diagval.c | |- ( ph -> C e. Cat ) |
|
| 3 | diagval.d | |- ( ph -> D e. Cat ) |
|
| 4 | diag11.a | |- A = ( Base ` C ) |
|
| 5 | diag11.c | |- ( ph -> X e. A ) |
|
| 6 | diag11.k | |- K = ( ( 1st ` L ) ` X ) |
|
| 7 | eqid | |- ( D FuncCat C ) = ( D FuncCat C ) |
|
| 8 | 7 | fucbas | |- ( D Func C ) = ( Base ` ( D FuncCat C ) ) |
| 9 | relfunc | |- Rel ( C Func ( D FuncCat C ) ) |
|
| 10 | 1 2 3 7 | diagcl | |- ( ph -> L e. ( C Func ( D FuncCat C ) ) ) |
| 11 | 1st2ndbr | |- ( ( Rel ( C Func ( D FuncCat C ) ) /\ L e. ( C Func ( D FuncCat C ) ) ) -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
|
| 12 | 9 10 11 | sylancr | |- ( ph -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
| 13 | 4 8 12 | funcf1 | |- ( ph -> ( 1st ` L ) : A --> ( D Func C ) ) |
| 14 | 13 5 | ffvelcdmd | |- ( ph -> ( ( 1st ` L ) ` X ) e. ( D Func C ) ) |
| 15 | 6 14 | eqeltrid | |- ( ph -> K e. ( D Func C ) ) |