This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017) (Revised by Mario Carneiro, 15-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diagval.l | |- L = ( C DiagFunc D ) |
|
| diagval.c | |- ( ph -> C e. Cat ) |
||
| diagval.d | |- ( ph -> D e. Cat ) |
||
| diag11.a | |- A = ( Base ` C ) |
||
| diag11.c | |- ( ph -> X e. A ) |
||
| diag11.k | |- K = ( ( 1st ` L ) ` X ) |
||
| diag11.b | |- B = ( Base ` D ) |
||
| diag11.y | |- ( ph -> Y e. B ) |
||
| diag12.j | |- J = ( Hom ` D ) |
||
| diag12.i | |- .1. = ( Id ` C ) |
||
| diag12.z | |- ( ph -> Z e. B ) |
||
| diag12.f | |- ( ph -> F e. ( Y J Z ) ) |
||
| Assertion | diag12 | |- ( ph -> ( ( Y ( 2nd ` K ) Z ) ` F ) = ( .1. ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diagval.l | |- L = ( C DiagFunc D ) |
|
| 2 | diagval.c | |- ( ph -> C e. Cat ) |
|
| 3 | diagval.d | |- ( ph -> D e. Cat ) |
|
| 4 | diag11.a | |- A = ( Base ` C ) |
|
| 5 | diag11.c | |- ( ph -> X e. A ) |
|
| 6 | diag11.k | |- K = ( ( 1st ` L ) ` X ) |
|
| 7 | diag11.b | |- B = ( Base ` D ) |
|
| 8 | diag11.y | |- ( ph -> Y e. B ) |
|
| 9 | diag12.j | |- J = ( Hom ` D ) |
|
| 10 | diag12.i | |- .1. = ( Id ` C ) |
|
| 11 | diag12.z | |- ( ph -> Z e. B ) |
|
| 12 | diag12.f | |- ( ph -> F e. ( Y J Z ) ) |
|
| 13 | 1 2 3 | diagval | |- ( ph -> L = ( <. C , D >. curryF ( C 1stF D ) ) ) |
| 14 | 13 | fveq2d | |- ( ph -> ( 1st ` L ) = ( 1st ` ( <. C , D >. curryF ( C 1stF D ) ) ) ) |
| 15 | 14 | fveq1d | |- ( ph -> ( ( 1st ` L ) ` X ) = ( ( 1st ` ( <. C , D >. curryF ( C 1stF D ) ) ) ` X ) ) |
| 16 | 6 15 | eqtrid | |- ( ph -> K = ( ( 1st ` ( <. C , D >. curryF ( C 1stF D ) ) ) ` X ) ) |
| 17 | 16 | fveq2d | |- ( ph -> ( 2nd ` K ) = ( 2nd ` ( ( 1st ` ( <. C , D >. curryF ( C 1stF D ) ) ) ` X ) ) ) |
| 18 | 17 | oveqd | |- ( ph -> ( Y ( 2nd ` K ) Z ) = ( Y ( 2nd ` ( ( 1st ` ( <. C , D >. curryF ( C 1stF D ) ) ) ` X ) ) Z ) ) |
| 19 | 18 | fveq1d | |- ( ph -> ( ( Y ( 2nd ` K ) Z ) ` F ) = ( ( Y ( 2nd ` ( ( 1st ` ( <. C , D >. curryF ( C 1stF D ) ) ) ` X ) ) Z ) ` F ) ) |
| 20 | eqid | |- ( <. C , D >. curryF ( C 1stF D ) ) = ( <. C , D >. curryF ( C 1stF D ) ) |
|
| 21 | eqid | |- ( C Xc. D ) = ( C Xc. D ) |
|
| 22 | eqid | |- ( C 1stF D ) = ( C 1stF D ) |
|
| 23 | 21 2 3 22 | 1stfcl | |- ( ph -> ( C 1stF D ) e. ( ( C Xc. D ) Func C ) ) |
| 24 | eqid | |- ( ( 1st ` ( <. C , D >. curryF ( C 1stF D ) ) ) ` X ) = ( ( 1st ` ( <. C , D >. curryF ( C 1stF D ) ) ) ` X ) |
|
| 25 | 20 4 2 3 23 7 5 24 8 9 10 11 12 | curf12 | |- ( ph -> ( ( Y ( 2nd ` ( ( 1st ` ( <. C , D >. curryF ( C 1stF D ) ) ) ` X ) ) Z ) ` F ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. X , Z >. ) F ) ) |
| 26 | df-ov | |- ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. X , Z >. ) F ) = ( ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. X , Z >. ) ` <. ( .1. ` X ) , F >. ) |
|
| 27 | 21 4 7 | xpcbas | |- ( A X. B ) = ( Base ` ( C Xc. D ) ) |
| 28 | eqid | |- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
|
| 29 | 5 8 | opelxpd | |- ( ph -> <. X , Y >. e. ( A X. B ) ) |
| 30 | 5 11 | opelxpd | |- ( ph -> <. X , Z >. e. ( A X. B ) ) |
| 31 | 21 27 28 2 3 22 29 30 | 1stf2 | |- ( ph -> ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. X , Z >. ) = ( 1st |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. X , Z >. ) ) ) |
| 32 | 31 | fveq1d | |- ( ph -> ( ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. X , Z >. ) ` <. ( .1. ` X ) , F >. ) = ( ( 1st |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. X , Z >. ) ) ` <. ( .1. ` X ) , F >. ) ) |
| 33 | 26 32 | eqtrid | |- ( ph -> ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. X , Z >. ) F ) = ( ( 1st |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. X , Z >. ) ) ` <. ( .1. ` X ) , F >. ) ) |
| 34 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 35 | 4 34 10 2 5 | catidcl | |- ( ph -> ( .1. ` X ) e. ( X ( Hom ` C ) X ) ) |
| 36 | 35 12 | opelxpd | |- ( ph -> <. ( .1. ` X ) , F >. e. ( ( X ( Hom ` C ) X ) X. ( Y J Z ) ) ) |
| 37 | 21 4 7 34 9 5 8 5 11 28 | xpchom2 | |- ( ph -> ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. X , Z >. ) = ( ( X ( Hom ` C ) X ) X. ( Y J Z ) ) ) |
| 38 | 36 37 | eleqtrrd | |- ( ph -> <. ( .1. ` X ) , F >. e. ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. X , Z >. ) ) |
| 39 | 38 | fvresd | |- ( ph -> ( ( 1st |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. X , Z >. ) ) ` <. ( .1. ` X ) , F >. ) = ( 1st ` <. ( .1. ` X ) , F >. ) ) |
| 40 | op1stg | |- ( ( ( .1. ` X ) e. ( X ( Hom ` C ) X ) /\ F e. ( Y J Z ) ) -> ( 1st ` <. ( .1. ` X ) , F >. ) = ( .1. ` X ) ) |
|
| 41 | 35 12 40 | syl2anc | |- ( ph -> ( 1st ` <. ( .1. ` X ) , F >. ) = ( .1. ` X ) ) |
| 42 | 33 39 41 | 3eqtrd | |- ( ph -> ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. X , Z >. ) F ) = ( .1. ` X ) ) |
| 43 | 19 25 42 | 3eqtrd | |- ( ph -> ( ( Y ( 2nd ` K ) Z ) ` F ) = ( .1. ` X ) ) |