This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . Helper lemma to show that F is continuous. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | |- T e. LinOp |
|
| cnlnadjlem.2 | |- T e. ContOp |
||
| cnlnadjlem.3 | |- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
||
| cnlnadjlem.4 | |- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
||
| cnlnadjlem.5 | |- F = ( y e. ~H |-> B ) |
||
| Assertion | cnlnadjlem7 | |- ( A e. ~H -> ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | |- T e. LinOp |
|
| 2 | cnlnadjlem.2 | |- T e. ContOp |
|
| 3 | cnlnadjlem.3 | |- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
|
| 4 | cnlnadjlem.4 | |- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
|
| 5 | cnlnadjlem.5 | |- F = ( y e. ~H |-> B ) |
|
| 6 | breq1 | |- ( ( normh ` ( F ` A ) ) = 0 -> ( ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> 0 <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
|
| 7 | 1 2 3 4 5 | cnlnadjlem4 | |- ( A e. ~H -> ( F ` A ) e. ~H ) |
| 8 | 1 | lnopfi | |- T : ~H --> ~H |
| 9 | 8 | ffvelcdmi | |- ( ( F ` A ) e. ~H -> ( T ` ( F ` A ) ) e. ~H ) |
| 10 | 7 9 | syl | |- ( A e. ~H -> ( T ` ( F ` A ) ) e. ~H ) |
| 11 | hicl | |- ( ( ( T ` ( F ` A ) ) e. ~H /\ A e. ~H ) -> ( ( T ` ( F ` A ) ) .ih A ) e. CC ) |
|
| 12 | 10 11 | mpancom | |- ( A e. ~H -> ( ( T ` ( F ` A ) ) .ih A ) e. CC ) |
| 13 | 12 | abscld | |- ( A e. ~H -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) e. RR ) |
| 14 | normcl | |- ( ( T ` ( F ` A ) ) e. ~H -> ( normh ` ( T ` ( F ` A ) ) ) e. RR ) |
|
| 15 | 10 14 | syl | |- ( A e. ~H -> ( normh ` ( T ` ( F ` A ) ) ) e. RR ) |
| 16 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 17 | 15 16 | remulcld | |- ( A e. ~H -> ( ( normh ` ( T ` ( F ` A ) ) ) x. ( normh ` A ) ) e. RR ) |
| 18 | 1 2 | nmcopexi | |- ( normop ` T ) e. RR |
| 19 | normcl | |- ( ( F ` A ) e. ~H -> ( normh ` ( F ` A ) ) e. RR ) |
|
| 20 | 7 19 | syl | |- ( A e. ~H -> ( normh ` ( F ` A ) ) e. RR ) |
| 21 | remulcl | |- ( ( ( normop ` T ) e. RR /\ ( normh ` ( F ` A ) ) e. RR ) -> ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) e. RR ) |
|
| 22 | 18 20 21 | sylancr | |- ( A e. ~H -> ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) e. RR ) |
| 23 | 22 16 | remulcld | |- ( A e. ~H -> ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) e. RR ) |
| 24 | bcs | |- ( ( ( T ` ( F ` A ) ) e. ~H /\ A e. ~H ) -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) <_ ( ( normh ` ( T ` ( F ` A ) ) ) x. ( normh ` A ) ) ) |
|
| 25 | 10 24 | mpancom | |- ( A e. ~H -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) <_ ( ( normh ` ( T ` ( F ` A ) ) ) x. ( normh ` A ) ) ) |
| 26 | normge0 | |- ( A e. ~H -> 0 <_ ( normh ` A ) ) |
|
| 27 | 1 2 | nmcoplbi | |- ( ( F ` A ) e. ~H -> ( normh ` ( T ` ( F ` A ) ) ) <_ ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) ) |
| 28 | 7 27 | syl | |- ( A e. ~H -> ( normh ` ( T ` ( F ` A ) ) ) <_ ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) ) |
| 29 | 15 22 16 26 28 | lemul1ad | |- ( A e. ~H -> ( ( normh ` ( T ` ( F ` A ) ) ) x. ( normh ` A ) ) <_ ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) ) |
| 30 | 13 17 23 25 29 | letrd | |- ( A e. ~H -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) <_ ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) ) |
| 31 | 1 2 3 4 5 | cnlnadjlem5 | |- ( ( A e. ~H /\ ( F ` A ) e. ~H ) -> ( ( T ` ( F ` A ) ) .ih A ) = ( ( F ` A ) .ih ( F ` A ) ) ) |
| 32 | 7 31 | mpdan | |- ( A e. ~H -> ( ( T ` ( F ` A ) ) .ih A ) = ( ( F ` A ) .ih ( F ` A ) ) ) |
| 33 | 32 | fveq2d | |- ( A e. ~H -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) = ( abs ` ( ( F ` A ) .ih ( F ` A ) ) ) ) |
| 34 | hiidrcl | |- ( ( F ` A ) e. ~H -> ( ( F ` A ) .ih ( F ` A ) ) e. RR ) |
|
| 35 | 7 34 | syl | |- ( A e. ~H -> ( ( F ` A ) .ih ( F ` A ) ) e. RR ) |
| 36 | hiidge0 | |- ( ( F ` A ) e. ~H -> 0 <_ ( ( F ` A ) .ih ( F ` A ) ) ) |
|
| 37 | 7 36 | syl | |- ( A e. ~H -> 0 <_ ( ( F ` A ) .ih ( F ` A ) ) ) |
| 38 | 35 37 | absidd | |- ( A e. ~H -> ( abs ` ( ( F ` A ) .ih ( F ` A ) ) ) = ( ( F ` A ) .ih ( F ` A ) ) ) |
| 39 | normsq | |- ( ( F ` A ) e. ~H -> ( ( normh ` ( F ` A ) ) ^ 2 ) = ( ( F ` A ) .ih ( F ` A ) ) ) |
|
| 40 | 7 39 | syl | |- ( A e. ~H -> ( ( normh ` ( F ` A ) ) ^ 2 ) = ( ( F ` A ) .ih ( F ` A ) ) ) |
| 41 | 20 | recnd | |- ( A e. ~H -> ( normh ` ( F ` A ) ) e. CC ) |
| 42 | 41 | sqvald | |- ( A e. ~H -> ( ( normh ` ( F ` A ) ) ^ 2 ) = ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 43 | 40 42 | eqtr3d | |- ( A e. ~H -> ( ( F ` A ) .ih ( F ` A ) ) = ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 44 | 33 38 43 | 3eqtrd | |- ( A e. ~H -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) = ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 45 | 16 | recnd | |- ( A e. ~H -> ( normh ` A ) e. CC ) |
| 46 | 18 | recni | |- ( normop ` T ) e. CC |
| 47 | mul32 | |- ( ( ( normop ` T ) e. CC /\ ( normh ` ( F ` A ) ) e. CC /\ ( normh ` A ) e. CC ) -> ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) = ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
|
| 48 | 46 47 | mp3an1 | |- ( ( ( normh ` ( F ` A ) ) e. CC /\ ( normh ` A ) e. CC ) -> ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) = ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 49 | 41 45 48 | syl2anc | |- ( A e. ~H -> ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) = ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 50 | 30 44 49 | 3brtr3d | |- ( A e. ~H -> ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) <_ ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 51 | 50 | adantr | |- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) <_ ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 52 | 20 | adantr | |- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> ( normh ` ( F ` A ) ) e. RR ) |
| 53 | remulcl | |- ( ( ( normop ` T ) e. RR /\ ( normh ` A ) e. RR ) -> ( ( normop ` T ) x. ( normh ` A ) ) e. RR ) |
|
| 54 | 18 16 53 | sylancr | |- ( A e. ~H -> ( ( normop ` T ) x. ( normh ` A ) ) e. RR ) |
| 55 | 54 | adantr | |- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> ( ( normop ` T ) x. ( normh ` A ) ) e. RR ) |
| 56 | normge0 | |- ( ( F ` A ) e. ~H -> 0 <_ ( normh ` ( F ` A ) ) ) |
|
| 57 | 0re | |- 0 e. RR |
|
| 58 | leltne | |- ( ( 0 e. RR /\ ( normh ` ( F ` A ) ) e. RR /\ 0 <_ ( normh ` ( F ` A ) ) ) -> ( 0 < ( normh ` ( F ` A ) ) <-> ( normh ` ( F ` A ) ) =/= 0 ) ) |
|
| 59 | 57 58 | mp3an1 | |- ( ( ( normh ` ( F ` A ) ) e. RR /\ 0 <_ ( normh ` ( F ` A ) ) ) -> ( 0 < ( normh ` ( F ` A ) ) <-> ( normh ` ( F ` A ) ) =/= 0 ) ) |
| 60 | 19 56 59 | syl2anc | |- ( ( F ` A ) e. ~H -> ( 0 < ( normh ` ( F ` A ) ) <-> ( normh ` ( F ` A ) ) =/= 0 ) ) |
| 61 | 60 | biimpar | |- ( ( ( F ` A ) e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> 0 < ( normh ` ( F ` A ) ) ) |
| 62 | 7 61 | sylan | |- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> 0 < ( normh ` ( F ` A ) ) ) |
| 63 | lemul1 | |- ( ( ( normh ` ( F ` A ) ) e. RR /\ ( ( normop ` T ) x. ( normh ` A ) ) e. RR /\ ( ( normh ` ( F ` A ) ) e. RR /\ 0 < ( normh ` ( F ` A ) ) ) ) -> ( ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) <_ ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) ) |
|
| 64 | 52 55 52 62 63 | syl112anc | |- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> ( ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) <_ ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) ) |
| 65 | 51 64 | mpbird | |- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 66 | nmopge0 | |- ( T : ~H --> ~H -> 0 <_ ( normop ` T ) ) |
|
| 67 | 8 66 | ax-mp | |- 0 <_ ( normop ` T ) |
| 68 | mulge0 | |- ( ( ( ( normop ` T ) e. RR /\ 0 <_ ( normop ` T ) ) /\ ( ( normh ` A ) e. RR /\ 0 <_ ( normh ` A ) ) ) -> 0 <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
|
| 69 | 18 67 68 | mpanl12 | |- ( ( ( normh ` A ) e. RR /\ 0 <_ ( normh ` A ) ) -> 0 <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 70 | 16 26 69 | syl2anc | |- ( A e. ~H -> 0 <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 71 | 6 65 70 | pm2.61ne | |- ( A e. ~H -> ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |