This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcs | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( abs ` ( A .ih B ) ) = ( abs ` ( if ( A e. ~H , A , 0h ) .ih B ) ) ) |
|
| 2 | fveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` A ) = ( normh ` if ( A e. ~H , A , 0h ) ) ) |
|
| 3 | 2 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` A ) x. ( normh ` B ) ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) x. ( normh ` B ) ) ) |
| 4 | 1 3 | breq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) <-> ( abs ` ( if ( A e. ~H , A , 0h ) .ih B ) ) <_ ( ( normh ` if ( A e. ~H , A , 0h ) ) x. ( normh ` B ) ) ) ) |
| 5 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) .ih B ) = ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) |
|
| 6 | 5 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( abs ` ( if ( A e. ~H , A , 0h ) .ih B ) ) = ( abs ` ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) ) |
| 7 | fveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` B ) = ( normh ` if ( B e. ~H , B , 0h ) ) ) |
|
| 8 | 7 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` if ( A e. ~H , A , 0h ) ) x. ( normh ` B ) ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) x. ( normh ` if ( B e. ~H , B , 0h ) ) ) ) |
| 9 | 6 8 | breq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( abs ` ( if ( A e. ~H , A , 0h ) .ih B ) ) <_ ( ( normh ` if ( A e. ~H , A , 0h ) ) x. ( normh ` B ) ) <-> ( abs ` ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) <_ ( ( normh ` if ( A e. ~H , A , 0h ) ) x. ( normh ` if ( B e. ~H , B , 0h ) ) ) ) ) |
| 10 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 11 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 12 | 10 11 | bcsiHIL | |- ( abs ` ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) <_ ( ( normh ` if ( A e. ~H , A , 0h ) ) x. ( normh ` if ( B e. ~H , B , 0h ) ) ) |
| 13 | 4 9 12 | dedth2h | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) ) |