This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 5-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcopex.1 | |- T e. LinOp |
|
| nmcopex.2 | |- T e. ContOp |
||
| Assertion | nmcopexi | |- ( normop ` T ) e. RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcopex.1 | |- T e. LinOp |
|
| 2 | nmcopex.2 | |- T e. ContOp |
|
| 3 | ax-hv0cl | |- 0h e. ~H |
|
| 4 | 1rp | |- 1 e. RR+ |
|
| 5 | cnopc | |- ( ( T e. ContOp /\ 0h e. ~H /\ 1 e. RR+ ) -> E. y e. RR+ A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 ) ) |
|
| 6 | 2 3 4 5 | mp3an | |- E. y e. RR+ A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 ) |
| 7 | hvsub0 | |- ( z e. ~H -> ( z -h 0h ) = z ) |
|
| 8 | 7 | fveq2d | |- ( z e. ~H -> ( normh ` ( z -h 0h ) ) = ( normh ` z ) ) |
| 9 | 8 | breq1d | |- ( z e. ~H -> ( ( normh ` ( z -h 0h ) ) < y <-> ( normh ` z ) < y ) ) |
| 10 | 1 | lnop0i | |- ( T ` 0h ) = 0h |
| 11 | 10 | oveq2i | |- ( ( T ` z ) -h ( T ` 0h ) ) = ( ( T ` z ) -h 0h ) |
| 12 | 1 | lnopfi | |- T : ~H --> ~H |
| 13 | 12 | ffvelcdmi | |- ( z e. ~H -> ( T ` z ) e. ~H ) |
| 14 | hvsub0 | |- ( ( T ` z ) e. ~H -> ( ( T ` z ) -h 0h ) = ( T ` z ) ) |
|
| 15 | 13 14 | syl | |- ( z e. ~H -> ( ( T ` z ) -h 0h ) = ( T ` z ) ) |
| 16 | 11 15 | eqtrid | |- ( z e. ~H -> ( ( T ` z ) -h ( T ` 0h ) ) = ( T ` z ) ) |
| 17 | 16 | fveq2d | |- ( z e. ~H -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) = ( normh ` ( T ` z ) ) ) |
| 18 | 17 | breq1d | |- ( z e. ~H -> ( ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 <-> ( normh ` ( T ` z ) ) < 1 ) ) |
| 19 | 9 18 | imbi12d | |- ( z e. ~H -> ( ( ( normh ` ( z -h 0h ) ) < y -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 ) <-> ( ( normh ` z ) < y -> ( normh ` ( T ` z ) ) < 1 ) ) ) |
| 20 | 19 | ralbiia | |- ( A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 ) <-> A. z e. ~H ( ( normh ` z ) < y -> ( normh ` ( T ` z ) ) < 1 ) ) |
| 21 | 20 | rexbii | |- ( E. y e. RR+ A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 ) <-> E. y e. RR+ A. z e. ~H ( ( normh ` z ) < y -> ( normh ` ( T ` z ) ) < 1 ) ) |
| 22 | 6 21 | mpbi | |- E. y e. RR+ A. z e. ~H ( ( normh ` z ) < y -> ( normh ` ( T ` z ) ) < 1 ) |
| 23 | nmopval | |- ( T : ~H --> ~H -> ( normop ` T ) = sup ( { m | E. x e. ~H ( ( normh ` x ) <_ 1 /\ m = ( normh ` ( T ` x ) ) ) } , RR* , < ) ) |
|
| 24 | 12 23 | ax-mp | |- ( normop ` T ) = sup ( { m | E. x e. ~H ( ( normh ` x ) <_ 1 /\ m = ( normh ` ( T ` x ) ) ) } , RR* , < ) |
| 25 | 12 | ffvelcdmi | |- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 26 | normcl | |- ( ( T ` x ) e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
|
| 27 | 25 26 | syl | |- ( x e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
| 28 | 10 | fveq2i | |- ( normh ` ( T ` 0h ) ) = ( normh ` 0h ) |
| 29 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 30 | 28 29 | eqtri | |- ( normh ` ( T ` 0h ) ) = 0 |
| 31 | rpcn | |- ( ( y / 2 ) e. RR+ -> ( y / 2 ) e. CC ) |
|
| 32 | 1 | lnopmuli | |- ( ( ( y / 2 ) e. CC /\ x e. ~H ) -> ( T ` ( ( y / 2 ) .h x ) ) = ( ( y / 2 ) .h ( T ` x ) ) ) |
| 33 | 31 32 | sylan | |- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( T ` ( ( y / 2 ) .h x ) ) = ( ( y / 2 ) .h ( T ` x ) ) ) |
| 34 | 33 | fveq2d | |- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( normh ` ( T ` ( ( y / 2 ) .h x ) ) ) = ( normh ` ( ( y / 2 ) .h ( T ` x ) ) ) ) |
| 35 | norm-iii | |- ( ( ( y / 2 ) e. CC /\ ( T ` x ) e. ~H ) -> ( normh ` ( ( y / 2 ) .h ( T ` x ) ) ) = ( ( abs ` ( y / 2 ) ) x. ( normh ` ( T ` x ) ) ) ) |
|
| 36 | 31 25 35 | syl2an | |- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( normh ` ( ( y / 2 ) .h ( T ` x ) ) ) = ( ( abs ` ( y / 2 ) ) x. ( normh ` ( T ` x ) ) ) ) |
| 37 | rpre | |- ( ( y / 2 ) e. RR+ -> ( y / 2 ) e. RR ) |
|
| 38 | rpge0 | |- ( ( y / 2 ) e. RR+ -> 0 <_ ( y / 2 ) ) |
|
| 39 | 37 38 | absidd | |- ( ( y / 2 ) e. RR+ -> ( abs ` ( y / 2 ) ) = ( y / 2 ) ) |
| 40 | 39 | adantr | |- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( abs ` ( y / 2 ) ) = ( y / 2 ) ) |
| 41 | 40 | oveq1d | |- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( ( abs ` ( y / 2 ) ) x. ( normh ` ( T ` x ) ) ) = ( ( y / 2 ) x. ( normh ` ( T ` x ) ) ) ) |
| 42 | 34 36 41 | 3eqtrrd | |- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( ( y / 2 ) x. ( normh ` ( T ` x ) ) ) = ( normh ` ( T ` ( ( y / 2 ) .h x ) ) ) ) |
| 43 | 22 24 27 30 42 | nmcexi | |- ( normop ` T ) e. RR |