This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . Helper lemma to show that F is continuous. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | ||
| cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | ||
| cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | ||
| cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | ||
| Assertion | cnlnadjlem7 | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | |
| 4 | cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | |
| 5 | cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | |
| 6 | breq1 | ⊢ ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) = 0 → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ 0 ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) | |
| 7 | 1 2 3 4 5 | cnlnadjlem4 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐹 ‘ 𝐴 ) ∈ ℋ ) |
| 8 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 9 | 8 | ffvelcdmi | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℋ ) |
| 10 | 7 9 | syl | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℋ ) |
| 11 | hicl | ⊢ ( ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ∈ ℂ ) | |
| 12 | 10 11 | mpancom | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ∈ ℂ ) |
| 13 | 12 | abscld | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) ∈ ℝ ) |
| 14 | normcl | ⊢ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) | |
| 15 | 10 14 | syl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 16 | normcl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) | |
| 17 | 15 16 | remulcld | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 18 | 1 2 | nmcopexi | ⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 19 | normcl | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) | |
| 20 | 7 19 | syl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 21 | remulcl | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) | |
| 22 | 18 20 21 | sylancr | ⊢ ( 𝐴 ∈ ℋ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 23 | 22 16 | remulcld | ⊢ ( 𝐴 ∈ ℋ → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 24 | bcs | ⊢ ( ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) ≤ ( ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ) | |
| 25 | 10 24 | mpancom | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) ≤ ( ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 26 | normge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) | |
| 27 | 1 2 | nmcoplbi | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 28 | 7 27 | syl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 29 | 15 22 16 26 28 | lemul1ad | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 30 | 13 17 23 25 29 | letrd | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 31 | 1 2 3 4 5 | cnlnadjlem5 | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 32 | 7 31 | mpdan | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 33 | 32 | fveq2d | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 34 | hiidrcl | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) | |
| 35 | 7 34 | syl | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 36 | hiidge0 | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) | |
| 37 | 7 36 | syl | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 38 | 35 37 | absidd | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) = ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 39 | normsq | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) | |
| 40 | 7 39 | syl | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 41 | 20 | recnd | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 42 | 41 | sqvald | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 43 | 40 42 | eqtr3d | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) = ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 44 | 33 38 43 | 3eqtrd | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) = ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 45 | 16 | recnd | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 46 | 18 | recni | ⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
| 47 | mul32 | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ∧ ( normℎ ‘ 𝐴 ) ∈ ℂ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) | |
| 48 | 46 47 | mp3an1 | ⊢ ( ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ∧ ( normℎ ‘ 𝐴 ) ∈ ℂ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 49 | 41 45 48 | syl2anc | ⊢ ( 𝐴 ∈ ℋ → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 50 | 30 44 49 | 3brtr3d | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 52 | 20 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 53 | remulcl | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normℎ ‘ 𝐴 ) ∈ ℝ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 54 | 18 16 53 | sylancr | ⊢ ( 𝐴 ∈ ℋ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 55 | 54 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 56 | normge0 | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) | |
| 57 | 0re | ⊢ 0 ∈ ℝ | |
| 58 | leltne | ⊢ ( ( 0 ∈ ℝ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) → ( 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) ) | |
| 59 | 57 58 | mp3an1 | ⊢ ( ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) → ( 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) ) |
| 60 | 19 56 59 | syl2anc | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) ) |
| 61 | 60 | biimpar | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) |
| 62 | 7 61 | sylan | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) |
| 63 | lemul1 | ⊢ ( ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ∧ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ∧ ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) ) | |
| 64 | 52 55 52 62 63 | syl112anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 65 | 51 64 | mpbird | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 66 | nmopge0 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ 𝑇 ) ) | |
| 67 | 8 66 | ax-mp | ⊢ 0 ≤ ( normop ‘ 𝑇 ) |
| 68 | mulge0 | ⊢ ( ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 ≤ ( normop ‘ 𝑇 ) ) ∧ ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐴 ) ) ) → 0 ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) | |
| 69 | 18 67 68 | mpanl12 | ⊢ ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 70 | 16 26 69 | syl2anc | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 71 | 6 65 70 | pm2.61ne | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |