This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulge0 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> 0 <_ ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | |- ( ( A e. RR /\ B e. RR ) -> 0 e. RR ) |
|
| 2 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 3 | 1 2 | leloed | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 4 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 5 | 1 4 | leloed | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
| 6 | 3 5 | anbi12d | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ 0 <_ B ) <-> ( ( 0 < A \/ 0 = A ) /\ ( 0 < B \/ 0 = B ) ) ) ) |
| 7 | 0red | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> 0 e. RR ) |
|
| 8 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> A e. RR ) |
|
| 9 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> B e. RR ) |
|
| 10 | 8 9 | remulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> ( A x. B ) e. RR ) |
| 11 | mulgt0 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A x. B ) ) |
|
| 12 | 11 | an4s | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> 0 < ( A x. B ) ) |
| 13 | 7 10 12 | ltled | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> 0 <_ ( A x. B ) ) |
| 14 | 13 | ex | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 < B ) -> 0 <_ ( A x. B ) ) ) |
| 15 | 0re | |- 0 e. RR |
|
| 16 | leid | |- ( 0 e. RR -> 0 <_ 0 ) |
|
| 17 | 15 16 | ax-mp | |- 0 <_ 0 |
| 18 | 4 | recnd | |- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 19 | 18 | mul02d | |- ( ( A e. RR /\ B e. RR ) -> ( 0 x. B ) = 0 ) |
| 20 | 17 19 | breqtrrid | |- ( ( A e. RR /\ B e. RR ) -> 0 <_ ( 0 x. B ) ) |
| 21 | oveq1 | |- ( 0 = A -> ( 0 x. B ) = ( A x. B ) ) |
|
| 22 | 21 | breq2d | |- ( 0 = A -> ( 0 <_ ( 0 x. B ) <-> 0 <_ ( A x. B ) ) ) |
| 23 | 20 22 | syl5ibcom | |- ( ( A e. RR /\ B e. RR ) -> ( 0 = A -> 0 <_ ( A x. B ) ) ) |
| 24 | 23 | adantrd | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 = A /\ 0 < B ) -> 0 <_ ( A x. B ) ) ) |
| 25 | 2 | recnd | |- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 26 | 25 | mul01d | |- ( ( A e. RR /\ B e. RR ) -> ( A x. 0 ) = 0 ) |
| 27 | 17 26 | breqtrrid | |- ( ( A e. RR /\ B e. RR ) -> 0 <_ ( A x. 0 ) ) |
| 28 | oveq2 | |- ( 0 = B -> ( A x. 0 ) = ( A x. B ) ) |
|
| 29 | 28 | breq2d | |- ( 0 = B -> ( 0 <_ ( A x. 0 ) <-> 0 <_ ( A x. B ) ) ) |
| 30 | 27 29 | syl5ibcom | |- ( ( A e. RR /\ B e. RR ) -> ( 0 = B -> 0 <_ ( A x. B ) ) ) |
| 31 | 30 | adantld | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 = B ) -> 0 <_ ( A x. B ) ) ) |
| 32 | 30 | adantld | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 = A /\ 0 = B ) -> 0 <_ ( A x. B ) ) ) |
| 33 | 14 24 31 32 | ccased | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( 0 < A \/ 0 = A ) /\ ( 0 < B \/ 0 = B ) ) -> 0 <_ ( A x. B ) ) ) |
| 34 | 6 33 | sylbid | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ 0 <_ B ) -> 0 <_ ( A x. B ) ) ) |
| 35 | 34 | imp | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A x. B ) ) |
| 36 | 35 | an4s | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> 0 <_ ( A x. B ) ) |