This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with self is not negative. (Contributed by NM, 29-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hiidge0 | |- ( A e. ~H -> 0 <_ ( A .ih A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.1 | |- ( -. A = 0h \/ A = 0h ) |
|
| 2 | df-ne | |- ( A =/= 0h <-> -. A = 0h ) |
|
| 3 | ax-his4 | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |
|
| 4 | 2 3 | sylan2br | |- ( ( A e. ~H /\ -. A = 0h ) -> 0 < ( A .ih A ) ) |
| 5 | 4 | ex | |- ( A e. ~H -> ( -. A = 0h -> 0 < ( A .ih A ) ) ) |
| 6 | oveq1 | |- ( A = 0h -> ( A .ih A ) = ( 0h .ih A ) ) |
|
| 7 | hi01 | |- ( A e. ~H -> ( 0h .ih A ) = 0 ) |
|
| 8 | 6 7 | sylan9eqr | |- ( ( A e. ~H /\ A = 0h ) -> ( A .ih A ) = 0 ) |
| 9 | 8 | eqcomd | |- ( ( A e. ~H /\ A = 0h ) -> 0 = ( A .ih A ) ) |
| 10 | 9 | ex | |- ( A e. ~H -> ( A = 0h -> 0 = ( A .ih A ) ) ) |
| 11 | 5 10 | orim12d | |- ( A e. ~H -> ( ( -. A = 0h \/ A = 0h ) -> ( 0 < ( A .ih A ) \/ 0 = ( A .ih A ) ) ) ) |
| 12 | 1 11 | mpi | |- ( A e. ~H -> ( 0 < ( A .ih A ) \/ 0 = ( A .ih A ) ) ) |
| 13 | 0re | |- 0 e. RR |
|
| 14 | hiidrcl | |- ( A e. ~H -> ( A .ih A ) e. RR ) |
|
| 15 | leloe | |- ( ( 0 e. RR /\ ( A .ih A ) e. RR ) -> ( 0 <_ ( A .ih A ) <-> ( 0 < ( A .ih A ) \/ 0 = ( A .ih A ) ) ) ) |
|
| 16 | 13 14 15 | sylancr | |- ( A e. ~H -> ( 0 <_ ( A .ih A ) <-> ( 0 < ( A .ih A ) \/ 0 = ( A .ih A ) ) ) ) |
| 17 | 12 16 | mpbird | |- ( A e. ~H -> 0 <_ ( A .ih A ) ) |