This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopge0 | |- ( T : ~H --> ~H -> 0 <_ ( normop ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | ffvelcdm | |- ( ( T : ~H --> ~H /\ 0h e. ~H ) -> ( T ` 0h ) e. ~H ) |
|
| 3 | 1 2 | mpan2 | |- ( T : ~H --> ~H -> ( T ` 0h ) e. ~H ) |
| 4 | normge0 | |- ( ( T ` 0h ) e. ~H -> 0 <_ ( normh ` ( T ` 0h ) ) ) |
|
| 5 | 3 4 | syl | |- ( T : ~H --> ~H -> 0 <_ ( normh ` ( T ` 0h ) ) ) |
| 6 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 7 | 0le1 | |- 0 <_ 1 |
|
| 8 | 6 7 | eqbrtri | |- ( normh ` 0h ) <_ 1 |
| 9 | nmoplb | |- ( ( T : ~H --> ~H /\ 0h e. ~H /\ ( normh ` 0h ) <_ 1 ) -> ( normh ` ( T ` 0h ) ) <_ ( normop ` T ) ) |
|
| 10 | 1 8 9 | mp3an23 | |- ( T : ~H --> ~H -> ( normh ` ( T ` 0h ) ) <_ ( normop ` T ) ) |
| 11 | normcl | |- ( ( T ` 0h ) e. ~H -> ( normh ` ( T ` 0h ) ) e. RR ) |
|
| 12 | 3 11 | syl | |- ( T : ~H --> ~H -> ( normh ` ( T ` 0h ) ) e. RR ) |
| 13 | 12 | rexrd | |- ( T : ~H --> ~H -> ( normh ` ( T ` 0h ) ) e. RR* ) |
| 14 | nmopxr | |- ( T : ~H --> ~H -> ( normop ` T ) e. RR* ) |
|
| 15 | 0xr | |- 0 e. RR* |
|
| 16 | xrletr | |- ( ( 0 e. RR* /\ ( normh ` ( T ` 0h ) ) e. RR* /\ ( normop ` T ) e. RR* ) -> ( ( 0 <_ ( normh ` ( T ` 0h ) ) /\ ( normh ` ( T ` 0h ) ) <_ ( normop ` T ) ) -> 0 <_ ( normop ` T ) ) ) |
|
| 17 | 15 16 | mp3an1 | |- ( ( ( normh ` ( T ` 0h ) ) e. RR* /\ ( normop ` T ) e. RR* ) -> ( ( 0 <_ ( normh ` ( T ` 0h ) ) /\ ( normh ` ( T ` 0h ) ) <_ ( normop ` T ) ) -> 0 <_ ( normop ` T ) ) ) |
| 18 | 13 14 17 | syl2anc | |- ( T : ~H --> ~H -> ( ( 0 <_ ( normh ` ( T ` 0h ) ) /\ ( normh ` ( T ` 0h ) ) <_ ( normop ` T ) ) -> 0 <_ ( normop ` T ) ) ) |
| 19 | 5 10 18 | mp2and | |- ( T : ~H --> ~H -> 0 <_ ( normop ` T ) ) |