This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a norm. (Contributed by NM, 12-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normsq | |- ( A e. ~H -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` A ) = ( normh ` if ( A e. ~H , A , 0h ) ) ) |
|
| 2 | 1 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` A ) ^ 2 ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) |
| 3 | id | |- ( A = if ( A e. ~H , A , 0h ) -> A = if ( A e. ~H , A , 0h ) ) |
|
| 4 | 3 3 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( A .ih A ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` A ) ^ 2 ) = ( A .ih A ) <-> ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) ) |
| 6 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 7 | 6 | normsqi | |- ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) |
| 8 | 5 7 | dedth | |- ( A e. ~H -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) ) |