This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every continuous linear operator has an adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadj.1 | |- T e. LinOp |
|
| cnlnadj.2 | |- T e. ContOp |
||
| Assertion | cnlnadji | |- E. t e. ( LinOp i^i ContOp ) A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadj.1 | |- T e. LinOp |
|
| 2 | cnlnadj.2 | |- T e. ContOp |
|
| 3 | eqid | |- ( g e. ~H |-> ( ( T ` g ) .ih z ) ) = ( g e. ~H |-> ( ( T ` g ) .ih z ) ) |
|
| 4 | oveq2 | |- ( f = w -> ( v .ih f ) = ( v .ih w ) ) |
|
| 5 | 4 | eqeq2d | |- ( f = w -> ( ( ( T ` v ) .ih z ) = ( v .ih f ) <-> ( ( T ` v ) .ih z ) = ( v .ih w ) ) ) |
| 6 | 5 | ralbidv | |- ( f = w -> ( A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) <-> A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih w ) ) ) |
| 7 | 6 | cbvriotavw | |- ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih w ) ) |
| 8 | eqid | |- ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) = ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) |
|
| 9 | 1 2 3 7 8 | cnlnadjlem9 | |- E. t e. ( LinOp i^i ContOp ) A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) |