This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . F is an adjoint of T (later, we will show it is unique). (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | |- T e. LinOp |
|
| cnlnadjlem.2 | |- T e. ContOp |
||
| cnlnadjlem.3 | |- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
||
| cnlnadjlem.4 | |- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
||
| cnlnadjlem.5 | |- F = ( y e. ~H |-> B ) |
||
| Assertion | cnlnadjlem5 | |- ( ( A e. ~H /\ C e. ~H ) -> ( ( T ` C ) .ih A ) = ( C .ih ( F ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | |- T e. LinOp |
|
| 2 | cnlnadjlem.2 | |- T e. ContOp |
|
| 3 | cnlnadjlem.3 | |- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
|
| 4 | cnlnadjlem.4 | |- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
|
| 5 | cnlnadjlem.5 | |- F = ( y e. ~H |-> B ) |
|
| 6 | nfcv | |- F/_ y A |
|
| 7 | nfcv | |- F/_ y ~H |
|
| 8 | nfcv | |- F/_ y f |
|
| 9 | nfcv | |- F/_ y .ih |
|
| 10 | nfmpt1 | |- F/_ y ( y e. ~H |-> B ) |
|
| 11 | 5 10 | nfcxfr | |- F/_ y F |
| 12 | 11 6 | nffv | |- F/_ y ( F ` A ) |
| 13 | 8 9 12 | nfov | |- F/_ y ( f .ih ( F ` A ) ) |
| 14 | 13 | nfeq2 | |- F/ y ( ( T ` f ) .ih A ) = ( f .ih ( F ` A ) ) |
| 15 | 7 14 | nfralw | |- F/ y A. f e. ~H ( ( T ` f ) .ih A ) = ( f .ih ( F ` A ) ) |
| 16 | oveq2 | |- ( y = A -> ( ( T ` f ) .ih y ) = ( ( T ` f ) .ih A ) ) |
|
| 17 | fveq2 | |- ( y = A -> ( F ` y ) = ( F ` A ) ) |
|
| 18 | 17 | oveq2d | |- ( y = A -> ( f .ih ( F ` y ) ) = ( f .ih ( F ` A ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( y = A -> ( ( ( T ` f ) .ih y ) = ( f .ih ( F ` y ) ) <-> ( ( T ` f ) .ih A ) = ( f .ih ( F ` A ) ) ) ) |
| 20 | 19 | ralbidv | |- ( y = A -> ( A. f e. ~H ( ( T ` f ) .ih y ) = ( f .ih ( F ` y ) ) <-> A. f e. ~H ( ( T ` f ) .ih A ) = ( f .ih ( F ` A ) ) ) ) |
| 21 | riotaex | |- ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) e. _V |
|
| 22 | 4 21 | eqeltri | |- B e. _V |
| 23 | 5 | fvmpt2 | |- ( ( y e. ~H /\ B e. _V ) -> ( F ` y ) = B ) |
| 24 | 22 23 | mpan2 | |- ( y e. ~H -> ( F ` y ) = B ) |
| 25 | fveq2 | |- ( v = f -> ( T ` v ) = ( T ` f ) ) |
|
| 26 | 25 | oveq1d | |- ( v = f -> ( ( T ` v ) .ih y ) = ( ( T ` f ) .ih y ) ) |
| 27 | oveq1 | |- ( v = f -> ( v .ih w ) = ( f .ih w ) ) |
|
| 28 | 26 27 | eqeq12d | |- ( v = f -> ( ( ( T ` v ) .ih y ) = ( v .ih w ) <-> ( ( T ` f ) .ih y ) = ( f .ih w ) ) ) |
| 29 | 28 | cbvralvw | |- ( A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) <-> A. f e. ~H ( ( T ` f ) .ih y ) = ( f .ih w ) ) |
| 30 | 29 | a1i | |- ( w e. ~H -> ( A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) <-> A. f e. ~H ( ( T ` f ) .ih y ) = ( f .ih w ) ) ) |
| 31 | 1 2 3 | cnlnadjlem1 | |- ( f e. ~H -> ( G ` f ) = ( ( T ` f ) .ih y ) ) |
| 32 | 31 | eqeq1d | |- ( f e. ~H -> ( ( G ` f ) = ( f .ih w ) <-> ( ( T ` f ) .ih y ) = ( f .ih w ) ) ) |
| 33 | 32 | ralbiia | |- ( A. f e. ~H ( G ` f ) = ( f .ih w ) <-> A. f e. ~H ( ( T ` f ) .ih y ) = ( f .ih w ) ) |
| 34 | 30 33 | bitr4di | |- ( w e. ~H -> ( A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) <-> A. f e. ~H ( G ` f ) = ( f .ih w ) ) ) |
| 35 | 34 | riotabiia | |- ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) = ( iota_ w e. ~H A. f e. ~H ( G ` f ) = ( f .ih w ) ) |
| 36 | 4 35 | eqtri | |- B = ( iota_ w e. ~H A. f e. ~H ( G ` f ) = ( f .ih w ) ) |
| 37 | 1 2 3 | cnlnadjlem2 | |- ( y e. ~H -> ( G e. LinFn /\ G e. ContFn ) ) |
| 38 | elin | |- ( G e. ( LinFn i^i ContFn ) <-> ( G e. LinFn /\ G e. ContFn ) ) |
|
| 39 | 37 38 | sylibr | |- ( y e. ~H -> G e. ( LinFn i^i ContFn ) ) |
| 40 | riesz4 | |- ( G e. ( LinFn i^i ContFn ) -> E! w e. ~H A. f e. ~H ( G ` f ) = ( f .ih w ) ) |
|
| 41 | riotacl2 | |- ( E! w e. ~H A. f e. ~H ( G ` f ) = ( f .ih w ) -> ( iota_ w e. ~H A. f e. ~H ( G ` f ) = ( f .ih w ) ) e. { w e. ~H | A. f e. ~H ( G ` f ) = ( f .ih w ) } ) |
|
| 42 | 39 40 41 | 3syl | |- ( y e. ~H -> ( iota_ w e. ~H A. f e. ~H ( G ` f ) = ( f .ih w ) ) e. { w e. ~H | A. f e. ~H ( G ` f ) = ( f .ih w ) } ) |
| 43 | 36 42 | eqeltrid | |- ( y e. ~H -> B e. { w e. ~H | A. f e. ~H ( G ` f ) = ( f .ih w ) } ) |
| 44 | 24 43 | eqeltrd | |- ( y e. ~H -> ( F ` y ) e. { w e. ~H | A. f e. ~H ( G ` f ) = ( f .ih w ) } ) |
| 45 | oveq2 | |- ( w = ( F ` y ) -> ( f .ih w ) = ( f .ih ( F ` y ) ) ) |
|
| 46 | 45 | eqeq2d | |- ( w = ( F ` y ) -> ( ( ( T ` f ) .ih y ) = ( f .ih w ) <-> ( ( T ` f ) .ih y ) = ( f .ih ( F ` y ) ) ) ) |
| 47 | 46 | ralbidv | |- ( w = ( F ` y ) -> ( A. f e. ~H ( ( T ` f ) .ih y ) = ( f .ih w ) <-> A. f e. ~H ( ( T ` f ) .ih y ) = ( f .ih ( F ` y ) ) ) ) |
| 48 | 33 47 | bitrid | |- ( w = ( F ` y ) -> ( A. f e. ~H ( G ` f ) = ( f .ih w ) <-> A. f e. ~H ( ( T ` f ) .ih y ) = ( f .ih ( F ` y ) ) ) ) |
| 49 | 48 | elrab | |- ( ( F ` y ) e. { w e. ~H | A. f e. ~H ( G ` f ) = ( f .ih w ) } <-> ( ( F ` y ) e. ~H /\ A. f e. ~H ( ( T ` f ) .ih y ) = ( f .ih ( F ` y ) ) ) ) |
| 50 | 49 | simprbi | |- ( ( F ` y ) e. { w e. ~H | A. f e. ~H ( G ` f ) = ( f .ih w ) } -> A. f e. ~H ( ( T ` f ) .ih y ) = ( f .ih ( F ` y ) ) ) |
| 51 | 44 50 | syl | |- ( y e. ~H -> A. f e. ~H ( ( T ` f ) .ih y ) = ( f .ih ( F ` y ) ) ) |
| 52 | 6 15 20 51 | vtoclgaf | |- ( A e. ~H -> A. f e. ~H ( ( T ` f ) .ih A ) = ( f .ih ( F ` A ) ) ) |
| 53 | fveq2 | |- ( f = C -> ( T ` f ) = ( T ` C ) ) |
|
| 54 | 53 | oveq1d | |- ( f = C -> ( ( T ` f ) .ih A ) = ( ( T ` C ) .ih A ) ) |
| 55 | oveq1 | |- ( f = C -> ( f .ih ( F ` A ) ) = ( C .ih ( F ` A ) ) ) |
|
| 56 | 54 55 | eqeq12d | |- ( f = C -> ( ( ( T ` f ) .ih A ) = ( f .ih ( F ` A ) ) <-> ( ( T ` C ) .ih A ) = ( C .ih ( F ` A ) ) ) ) |
| 57 | 56 | rspccva | |- ( ( A. f e. ~H ( ( T ` f ) .ih A ) = ( f .ih ( F ` A ) ) /\ C e. ~H ) -> ( ( T ` C ) .ih A ) = ( C .ih ( F ` A ) ) ) |
| 58 | 52 57 | sylan | |- ( ( A e. ~H /\ C e. ~H ) -> ( ( T ` C ) .ih A ) = ( C .ih ( F ` A ) ) ) |